精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.

【答案】BC的长为12,四边形ABCD的面积为120

【解析】试题分析:根据勾股定理求得OA的长,再根据对角线互相平分的四边形是平行四边形证明四边形ABCD是平行四边形,从而根据平行四边形的对边相等就可求得BC的长;根据平行四边形的面积公式可以求得它的面积.

试题解析:在△AOD中,∠ADB=90°,AD=12,0D=5,

根据勾股定理,得

OA2=OD2+AD2=52+122=169,

∴OA=13.

∵AC=26,OA=13,

∴OA=OC,

DO=OB,

∴四边形ABCD为平行四边形,

∴AD=BC=12;

∵∠ADB=90°,

∴AD⊥BD,

∴S四边形ABCD=ADBD=12×10=120,

答:BC的长为12,四边形ABCD的面积为120.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D重合),PO的延长线交BCQ点.

1)求证:四边形PBQD为平行四边形.

2)若AB=3cmAD=4cmP从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两家体育用品商店出售同样的乒乓球和乒乓拍,乒乓球拍每幅定价20元,乒乓球每盒定价5元,现两家商店搞促销活动.甲店:每买一副球拍送一盒乒乓球;乙店:按定价的8折优惠.某班级需购球拍4副,乒乓球若干盒(不少于4盒).

1)设购买乒乓球盒数为(盒),在甲店购买的付款数为(元);在乙店购买的付款数为(元),分别写出的函数关系式,并写出定义域.

2)就乒乓球的盒数讨论去哪家购买合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:

时间t(天)

1

3

6

10

20

40

日销售量y(kg)

118

114

108

100

80

40

(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?

(2)问哪一天的销售利润最大?最大日销售利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E在边BC(E不与点B重合),连接AE,过点BBFAE于点F,交CD于点G.

(1)求证:ABF∽△BGC

(2)AB=2,GCD的中点,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形面积为,延长至点,使得,以为边在正方形另一侧作菱形,其中,依次延长类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点则四边形的面积为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线QN与等边ABC的两边ABBC分别交于点MN,且ACQNAM=MB=2cmQM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBCABAC,点EBC的中点,AEBD交于点F,且FAE的中点.

(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC4AB5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,内一点,过点分别作的平行线,交的四边于四点,若面积为6面积为4,则的面积为(  )

A.B.C.1D.2

查看答案和解析>>

同步练习册答案