分析 (1)过G作GM⊥AB于M,过H作HN⊥BC于N,求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,证出△GME≌△HNF即可;
(2)过G作GM⊥AB于M,过H作HN⊥BC于N,根据菱形面积公式求出GM=HN,求出∠GME=∠HNF=90°,∠GEM=∠HFN,证出△GME≌△HNF即可;
(3)过G作GM⊥AB于M,过H作HN⊥BC于N,根据平行四边形面积公式求出$\frac{GM}{HN}=\frac{BC}{AB}=\frac{b}{a}$,求出∠GME=∠HNF=90°,∠GEM=∠HFN,证出△GME∽△HNF即可.
解答 (1)解:EG=FH,
理由是:过G作GM⊥AB于M,过H作HN⊥BC于N,如图1:![]()
∵四边形ABCD是正方形,
∴DC=AB,AD∥BC,DC∥AB,AD=BC,∠D=∠A=∠B=∠C=90°,
∴GM∥AD∥BC,HN∥DC∥AB,
∴四边形ADGM、四边形GMBC、四边形AHNB,四边形DCNH是平行四边形,
∴DC=HN=AB,AD=GM=BC,
∴HN=GM,
∵∠ADC=∠HOE=90°,
∴∠DHO+∠DGE=360°-90°-90°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∵HN⊥BC,GM⊥AB,
∴∠GME=∠HNF=90°,
在△GME和△HNF中,
$\left\{\begin{array}{l}{∠GEM=∠HFN}\\{∠GME=∠HNF}\\{GM=HN}\end{array}\right.$,
∴△GME≌△HNF(AAS),
∴EG=FH;
(2)EG=FH,理由是:
过G作GM⊥AB于M,过H作HN⊥BC于N,如图2:![]()
∵四边形ABCD是菱形,
∴DC=AB=BC,AD∥BC,DC∥AB,
∵菱形ABCD的面积S=AB×GM=BC×HN,
∴GM=HN,
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
在△GME和△HNF中,
$\left\{\begin{array}{l}{∠GEM=∠HFN}\\{∠GME=∠HNF}\\{GM=HN}\end{array}\right.$,
∴△GME≌△HNF(AAS),
∴EG=FH.
(3)$\frac{EG}{FH}=\frac{b}{a}$
理由是:
过G作GM⊥AB于M,过H作HN⊥BC于N,如图3:![]()
∵四边形ABCD是平行四边形,
∴AD∥BC,DC∥AB,
∵平行四边形ABCD的面积S=AB×GM=BC×HN,
∵AB=a,AD=b,
∴$\frac{GM}{HN}=\frac{b}{a}$,
∵GM⊥AB,HN⊥BC,
∴∠GME=∠HNF=90°,
∵∠ADC=∠HOE,
∴∠ADC+∠HOG=∠EOH+∠HOG=180°,
∴∠DHO+∠DGE=360°-180°=180°,
∵AD∥BC,DC∥AB,
∴∠NFH=∠DHF,∠DGE+∠GEM=180°,
∴∠HFN=∠GEM,
∴△GME∽△HNF,
∴$\frac{EG}{FH}=\frac{GM}{HN}=\frac{b}{a}$,
故答案为:$\frac{EG}{FH}=\frac{b}{a}$.
点评 本题考查了正方形性质,平行四边形性质,菱形性质,面积公式,全等三角形的性质和判定,相似三角形的性质和判定的应用,题目具有一定的代表性,证明过程类似.
科目:初中数学 来源: 题型:选择题
| 等级 | 成绩(分) | 频数(人数) | 频率 |
| A | 90~100 | 19 | 0.38 |
| B | 75~89 | 20 | x |
| C | 60~74 | n | y |
| D | 60以下 | 3 | 0.06 |
| 合计 | 50 | 1.00 |
| A. | n=8,x=0.4 | B. | n=8,x=0.16 | C. | n=8,x=0.5 | D. | n=8,x=0.8 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com