精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD中,点E是对角线BD上的一点,连结AE并延长,交CD于点F,交BC的延长线于点G,连结CE.
(1)求证:∠BAE=∠BCE;
(2)当EF=2,AE=4时,求FG的长;
(3)连结DG,如果DG⊥BD,EF=m,正方形ABCD的面积为S,请直接写出
S与m的函数表达式.
考点:正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质
专题:
分析:(1)根据正方形的对角线线平分一组对角可得∠ABD=∠CBD,再利用“边角边”证明△ABE和△CBE全等,根据全等三角形对应角相等证明即可;
(2)求出△DEF和△BEA相似,根据相似三角形对应边成比例求出
DF
AB
=
1
2
,从而得到点F是CD的中点,再利用“角边角”证明△ADF和△GCF全等,根据全等三角形对应边相等可得FG=AF;
(3)判断出△BDG是等腰直角三角形,根据等腰直角三角形的性质可得BC=CG,然后求出点F是CD的中点,再根据相似三角形对应边成比例求出AE=2EF,设正方形的边长为a,利用勾股定理列方程用m表示出a2,再根据正方形的面积公式解答即可.
解答:(1)证明:在正方形ABCD中,∠ABD=∠CBD,AB=BC,
在△ABE和△CBE中,
AB=BC
∠ABD=∠CBD
BE=BE

∴△ABE≌△CBE(SAS),
∴∠BAE=∠BCE;

(2)解:∵正方形对边AB∥CD,
∴△DEF∽△BEA,
DF
AB
=
EF
AE
=
2
4
=
1
2

∴点F是CD的中点,
在△ADF和△GCF中,
∠ADF=∠GCF=90°
DF=CF
∠AFD=∠GFC

∴△ADF≌△GCF(ASA),
∴FG=AF,
∵EF=2,AE=4,
∴AF=AE+EF=4+2=6,
∴FG=6;

(3)解:∵∠DBC=45°,DG⊥BD,
∴△BDG是等腰直角三角形,
∴BC=CG,
∴点F是CD的中点,
∵正方形对边AB∥CD,
∴△DEF∽△BEA,
DF
AB
=
EF
AE
=
2
4
=
1
2

∴AE=2EF=2m,
∴AF=AE+EF=2m+m=3m,
设正方形的边长为a,则DF=
1
2
a,
由勾股定理得,a2+(
1
2
a)2=(3m)2
解得a2=
36
5
m2
所以,正方形ABCD的面积为S=
36
5
m2
点评:本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰直角三角形的判定与性质,熟记各性质与判断方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知AD∥EF∥BC,FG∥CH.求证:
AE
AB
=
DG
DH

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD边长为4,E、F分别是BC、CD上的两个动点(点E不与点B重合),∠AEF=90°,连接AF.
(1)试找出图中一定相似的三角形,简要证明过程;
(2)试找出图中不一定相似的三角形,并确定当其相似时点E所在的位置,简写推理过程;
(3)试找出图中一定不相似的三角形,简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

当整数x取何值时,分式
2
x+1
+
5x
x+1
的值是整数?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:-2a2(3ab2-5ab3+1).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示 在△ABC中,∠BAC的角平分线AD交D于点D.求证:
BD
DC
=
AB
AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于
 
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.
(1)则A,B两组行进的方向成直角吗?
(2)若A,B两组仍以原速前进,则至少几小时后相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(-
1
2
xy)•(4x-2xy2+1).

查看答案和解析>>

同步练习册答案