精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,抛物线交y轴于点C,对称轴与x轴交于点D, 设点P(x,y)是该抛物线在x轴上方的一个动点(与点C不重合),△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围。


,即,解得

设抛物线与x轴交于点A、B,(点A在点B的左边),则A(,0)、B(,0)。

②当点P在CM之间时,即0<x≤2,如答图2,

∵P(x,y),且点P在第一象限,∴PE=y,OE=x。

代入上式得:

综上所述,S关于x的函数关系式为:

【考点】动点问题,抛物线与x的交点问题,解一元二次方程,由实际问题列函数关系式,分类思想和转换思想的应用。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:

(1)计算并完成表格:

(2)请估计,当n很大时,频率将会接近多少?

(3)假如你去转动转盘一次,你获得铅笔的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【    】

 A.4种         B.5种        C.6种        D.7种

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,平面直角坐标系中,⊙O半径长为1.点⊙P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相交时,a值的取值范围为         

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.

(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;

(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;

(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在半径为2的扇形AOB中,∠AOB=60°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.

(1)当BC=1时,求线段OD的长;

(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;

(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.

(1)若直线AB解析式为

①求点C的坐标;

②求△OAC的面积.

(2)如图2,作的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,四边形ABCD是平行四边形,过点A、C、D作抛物线,与x轴的另一交点为E,连结CE。

(1)求点A、B、C、D的坐标;

(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;

(3)在满足(2)的条件下,过点M作一条直线,使之将四边形ABCD的面积分为2:3的两部分,设该直线与x轴交于点P,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


.如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.

(1)当x=     s时,DE⊥AB;

(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;

(3)当△BEF为等腰三角时,求x的值.

查看答案和解析>>

同步练习册答案