如图,在平面直角坐标系xOy中,抛物线
交y轴于点C,对称轴与x轴交于点D, 设点P(x,y)是该抛物线在x轴上方的一个动点(与点C不重合),△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围。
![]()
科目:初中数学 来源: 题型:
如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指
针落在哪
一区域就可以获得相应的奖品.下表是活动进
行中的一组统计数据:
![]()
![]()
(1)计算并完成表格:
![]()
![]()
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动转盘一次,你获得铅笔的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图①是3×3菱形格,将其中
两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【 】
![]()
A.4种
B.5种 C.6种 D.7种
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向
旋转45
°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正
方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正
方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在半径为2的扇形AOB中,∠AOB=60°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,在平面直角坐标系中,直线AB与
轴交于点A
,与
轴交于点B,与直线OC:
交于点C.
![]()
![]()
![]()
(1)若直线AB解析式为
,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作
的平分线ON,若AB⊥ON,垂足为E, OA=4
,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,四边形ABCD是平行四边形,过点A、C、D作抛物线
,与x轴的另一交点为E,连结CE。
(1)求点A、B、C、D的坐标;
(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N
的坐标;
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形ABCD的面积分为2:3的两部分,设该直线与x轴交于点P,求点P的坐标。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
.如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为y
cm.
(1)当x= s时,DE
⊥AB;
(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;
(3)当△BEF为等腰三角
形
时,求x的值.
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com