精英家教网 > 初中数学 > 题目详情

如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.

(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;

(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;

(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.


(1)相等   见解析     (2)见解析      (3)8

【解析】解:(1)相等

(3)连接OK,

∵∠COK=∠ACO=45°,

∴OK∥AC,

∴S△ACK=S△AOC=8.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


已知:y关于x的函数的图象与x轴有交点。

(1)求k的取值范围;

(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足

①求k的值;②当时,请结合函数图象确定y的最大值和最小值。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,分别以Rt△ABC的斜两条直角边为边向△ABC外作等边△BCD和等边△ACE, AD与BE交于点H,∠ACB=90°。

(1)求证:AD=BE;

(2)求∠AHE的度数;

(3)若∠BAC=30°,BC=1,求DE的长

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,抛物线关于直线对称,与坐标轴交于A、B、C三点,且AB=4,点D在抛物线上,直线是一次函数的图象,点O是坐标原点。

(1)求抛物线的解析式;

(2)把抛物线向左平移1个单位,再向上平移4个单位,所得抛物线与直线交于M、N两点,问在y轴负半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,对称轴为的抛物线轴相交于点

(1).求抛物线的解析式,并求出顶点的坐标

(2).连结AB,把AB所在的直线平移,使它经过原点O,得到直线.点P是上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为,当0<S≤18时,求的取值范围

(3).在(2)的条件下,当取最大值时,抛物线上是否存在点,使△OP为直角三角形且OP为直角边.若存在,直接写出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系xOy中,抛物线交y轴于点C,对称轴与x轴交于点D, 设点P(x,y)是该抛物线在x轴上方的一个动点(与点C不重合),△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:


 如下图所示,已知等腰梯形ABCD,AD∥BC,AD=2,BC=6,AB=DC=,若动直线l垂直于BC,且从经过点B的位置向右平移,直至经过点C的位置停止,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数关系式是         

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面坐标系中,直线y=﹣x+2与x轴,y轴分别交于点A,点B,动点P(a,b)在第一象限内,由点P向x轴,y轴所作的垂线PM,PN(垂足为M,N)分别与直线AB相交于点E,点F,当点P(a,b)运动时,矩形PMON的面积为定值2.当点E,F都在线段AB上时,由三条线段AE,EF,BF组成一个三角形,记此三角形的外接圆面积为S1,△OEF的面积为S2。试探究:是否存在最大值?若存在,请求出该最大值;若不存在,请说明理由。

                                                              

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在平面直角坐标系xOy中,A(2,0),B(4,0),动点C在直线上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是【    】

  A.1          B.2          C.3         D.4

查看答案和解析>>

同步练习册答案