精英家教网 > 初中数学 > 题目详情

【题目】如图是小西设计的作已知角∠AOB的平分线的尺规作图过程:

①在射线OB上取一点C

②以点O为圆心,OC长为半径作弧,交射线OA于点D

③分别以点CD为圆心,OC长为半径作弧,两弧相交于点E

④作射线OE

则射线OE即为∠AOB的角平分线.

请观察图形回答下列问题:

1)由步骤②知,线段OCOD的数量关系是______;连接DECE,线段COCE的数量关系是______

2)在(1)的条件下,若∠EOC=25°,求∠ECB的度数.

【答案】(1)OC=ODCO=CE.(2)50°

【解析】

1)利用基本作图,可得结论;

2)利用等腰三角形的性质以及三角形的外角的性质即可解决问题;

解:(1

由作图可知:OD=OCCO=CE

故答案为:OC=ODCO=CE

2)∵CO=CE

∴∠COE=CEO=25°

∴∠ECB=COE+CEO=50°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,∠DBC90°,∠C45°AC2ABC绕点B逆时针旋转60°得到DBE,连接AE

1)求证:ABC≌△ABE

2)连接AD,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.某商场为缓解停车难问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,城市在城市正东方向,现计划在两城市间修建一条高速公路(即线段).经测量,森林保护区的中心在城市的北偏东方向上,在线段上距城市处测得在北偏东方向上,已知森林保护区是以点为圆心,为半径的圆形区域.这条高速铁路是否会穿越保护区?请通过计算说明.(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+ca≠0)与x轴交于(-10),(30)两点,则下列说法:①abc0;②a-b+c=0;③2a+b=0;④2a+c0;⑤若Ax1y1),Bx2y2),Cx3y3)为抛物线上三点,且-1x1x21x33,则y2y1y3,其中正确的结论是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+cx轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.

(1)求抛物线的解析式;

(2)M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;

(3)(2)中,点M到直线BC的距离最大时,连接OMBC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A60),B63),画出ABO的所有以原点O为位似中心的CDO,且CDOABO的相似比为13,并写出CD的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,以BC为直径作圆,交斜边AB于点EDAC的中点.连接DODE.则下列结论中不一定正确的是(  )

A. DOABB. ADE是等腰三角形

C. DEACD. DE是⊙O的切线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图是一块边长为1,周长记为P1的等边三角形纸板,沿图的底边剪去一块边长 的等边三角形纸板后得到图,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的 )后,得图,记第nn≥3)块纸板的周长为Pn,则Pn-Pn-1=_________

查看答案和解析>>

同步练习册答案