【题目】如图,将一块等腰直角三角板放置在平面直角坐标系中,,,点在轴的正半轴上,点在轴的负半轴上,点在第二象限,所在直线的函数表达式是,若保持的长不变,当点在轴的正半轴滑动,点随之在轴的负半轴上滑动,则在滑动过程中,点与原点的最大距离是__________.
科目:初中数学 来源: 题型:
【题目】在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.
(I)如图①,若∠F=50°,求∠BGF的大小;
(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.
(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同? (填“相同”或“不相同”)
(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是 ;
(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC与BD相交于点O,∠D=∠C,添加下列哪个条件后,仍不能使△ADO≌△BCO的是( )
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE.
(1)求证:BE=CE
(2)如图2,若BE的延长线交AC于点F,且BF ⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF
(3)在(2)的条件下,若∠BAC=45,判断△CFE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,,在轴上,在轴上,.
(1)求证:;
(2)如图2,若点,,现有一个动点从点出发,沿着轴正方向运动,连结,当为等腰三角形时,求点的坐标;
(3)如图3,若,点,过作交于,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月,第二届“一带一路”国际合作高峰论坛在北京举行,共签署了总额640多亿美元的项目合作协议。某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各是多少元?(列二元一次方程组解应用题)
(2)设甲、乙两种商品的销售总收入为万元,销售甲种商品万件,
①写出与之间的函数关系式;
②若甲、乙两种商品的销售收入为5400万元,则销售甲种商品多少万件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】建立适当的坐标系,运用函数知识解决下面的问题:
如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2米,此时水位上升了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求证:BE=AD;
(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com