精英家教网 > 初中数学 > 题目详情
11.已知A=$\frac{1}{2}$x+y+2,B=x-$\frac{3}{4}$y-1.
(1)求A-2B;
(2)若3x-5y的值为4,求A-2B的值.

分析 (1)把A与B代入A-2B中,去括号合并即可得到结果;
(2)A-2B结果变形后,将3x-5y的值代入计算即可求出值.

解答 解:(1)∵A=$\frac{1}{2}$x+y+2,B=x-$\frac{3}{4}$y-1,
∴A-2B=$\frac{1}{2}$x+y+2-2x+$\frac{3}{2}$y+2=-$\frac{3}{2}$x+$\frac{5}{2}$y+4;
(2)∵3x-5y=4,
∴A-2B=-$\frac{1}{2}$(3x-5y)+4=-2+4=2.

点评 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.小乐的数学积累本上有这样一道题:
    解方程:$\frac{2x+1}{3}$-$\frac{5x-1}{6}$=1
    解:去分母,得6(2x+1)-(5x-1)=6…第一步
    去括号,得4x+2-5x-1=6…第二步
    移向、合并同类项,得x=5…第三步
    方程两边同除以-1,得x=-5…第四步
    在题后的反思中看,小郑总结到:解一元一次方程的一般步骤都知道,却没有掌握好,因此解题时有一步出现了错误…
    小乐的解法从第一步开始出现错误,然后,请你自己细心地解下面的方程:
    2-$\frac{1}{5}$(x+2)=$\frac{1}{2}$(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在∠1,∠2,∠3,∠4,∠5中,是同位角的是∠1与∠4;是内错角的是∠5与∠2、∠3与∠2;同旁内角的是∠1与∠5、∠3与∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图所示,已知∠ACB=90°,∠ADC=90°,图中互相垂直的线段有AC⊥BC,CD⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于72°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知方程组$\left\{\begin{array}{l}{2x+y=1+3m}\\{x+2y=5-m}\end{array}\right.$的解满足x-y>0,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图:在平面直角坐标系xOy中,已知正比例函数y=$\frac{4}{3}x$与一次函数y=-x+7的图象交于点A.
(1)求点A的坐标;
(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;
(3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=$\frac{4}{3}x$和y=-x+7的图象于点B、C,连接OC,若BC=$\frac{14}{5}$OA,求△ABC的面积及点B、点C的坐标;
(4)在(3)的条件下,设直线y=-x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.

查看答案和解析>>

同步练习册答案