分析 根据同位角、内错角、同旁内角的概念进行解答即可.
解答 解:∠1与∠4是同位角,
∠5与∠2、∠3与∠2是内错角,
∠1与∠5、∠3与∠4是同旁内角.
故答案为:∠1与∠4;∠5与∠2、∠3与∠2;∠1与∠5、∠3与∠4.
点评 本题考查的是同位角、内错角、同旁内角的概念,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{5}$×$\sqrt{5}$ | B. | 2$\sqrt{3}$×$3\sqrt{2}$ | C. | ($\sqrt{3}$+$\sqrt{2}$)×$[-(\sqrt{3}+\sqrt{2})]$ | D. | $\sqrt{3a-4b}•\sqrt{3a+4b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com