精英家教网 > 初中数学 > 题目详情
如图,在边长为9的等边△ABC中,BD=3,∠ADE=60°,求AE的长.
考点:相似三角形的判定与性质,等边三角形的性质
专题:
分析:根据三角形的外角的性质证得∠DAB=∠EDC,则易证△ABD∽△DCE,根据相似三角形的性质,相似三角形的对应边的比相等即可求解.
解答:解:∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC,
∴CD=BC-BD=9-3=6,
∴∠BAD+∠ADB=120°,
∵∠ADE=60°,
∴∠ADB+∠EDC=120°,
∴∠DAB=∠EDC,
又∵∠B=∠C=60°,
∴△ABD∽△DCE,
AB
BD
=
DC
CE
,即
9
3
=
6
CE

解得:CE=2,
故AE=AC-CE=9-2=7.
点评:本题考查了相似三角形的判定与性质,正确利用三角形的外角的性质,证明∠DAB=∠EDC是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

-13的相反数是
 
,倒数是
 
,绝对值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,⊙O为△ABC内切圆,与三边分别相切于D、E、F.
(1)求⊙O半径;
(2)若G为AB中点,求线段OG长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点D是△ABC的边BC上一点,已知AC=3,CD=
2
,∠DAC=∠B,则BD的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,陈老师出示一道试题:
如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,
∴∠1=∠2.又CN平分∠ACP,∠4=
1
2
∠ACP=60°,∴∠MCN=∠3+∠4=120°.①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
 
 
 

∴△AEM≌△MCN(ASA).∴AM=MN.
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(正方形四条边都相等、四个角都是直角)(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1是否还成立?(写出答案,并仿照(1)证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列三行数:
2,-4,8,-16…①
-1,2,-4,8…②
3,-3,9,-15…③
(1)第①行数按什么规律排列?(用式子表示即可)
(2)第②③行数与第①行数分别有什么关系?
(3)取每行的第9个数.求这三个数的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果圆内接正方形的面积为36cm2,那么同圆外切正方形的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.

查看答案和解析>>

同步练习册答案