精英家教网 > 初中数学 > 题目详情

【题目】某玩具专柜要经营一种新上市的儿童玩具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出专柜销售这种玩具,每天所得的销售利润W(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该玩具每天的销售利润最大;
(3)专柜结合上述情况,设计了A、B两种营销方案: 方案A:该玩具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件玩具的利润至少为25元.
请比较哪种方案的最大利润更高,并说明理由.

【答案】
(1)解:由题意可得:

w=(x﹣20)(250﹣10x+250)

=﹣10x2+700x﹣10000;


(2)解:w=﹣10x2+700x﹣10000

=﹣10(x﹣35)2+2250,

所以,当x=35时,w有最大值2250,

即销售单价为35元时,该文具每天的销售利润最大;


(3)解:方案A:由题可得20<x≤30,

因为a=﹣10<0,对称轴为x=35,

抛物线开口向下,在对称轴左侧,w随x的增大而增大,

所以,当x=30时,w取最大值为2000元,

方案B:由题意得:

解得:45≤x≤49,

在对称轴右侧,w随x的增大而减小,

所以,当x=45时,w取最大值为1250元,

因为2000元>1250元,

所以选择方案A.


【解析】(1)直接利用每件利润×销量=总利润,进而得出函数关系式;(2)直接利用配方法求出二次函数最值即可;(3)首先得出x的取值范围,进而利用二次函数增减性得出利润的最值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一长度为10的线段AC的两个端点A、C分别在y轴和x轴的正半轴上滑动,以A为直角顶点,AC为直角边在第一象限内作等腰直角△ABC,连接BO.
(1)求OB的最大值;
(2)在AC滑动过程中,△OBC能否恰好为等腰三角形?若能,求出此时点A的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列条件不能判定△ADB∽△ABC的是(
A.∠ABD=∠ACB
B.∠ADB=∠ABC
C.AB2=AD?AC
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H.
(1)求证:△BEF≌△CEH;
(2)求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛.某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:

(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;
(2)补全条形统计图;
(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.

(1)求证:DE⊥BC;
(2)若OE⊥CD,求证:2CEOE=CDDE;
(3)若OE⊥CD,BC=3,CE=1,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AB=5,BC=3,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A'处,当A'E⊥AC时,A'B=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.

(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?

查看答案和解析>>

同步练习册答案