精英家教网 > 初中数学 > 题目详情

【题目】对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:

【尝试】

(1)当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为   

(2)判断点A是否在抛物线L上;

(3)求n的值;

【发现】

通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为   

【应用】

二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

【答案】【尝试】(1)(1,﹣2).(2)A(2,0)在抛物线l.(3)6.【发现】抛物线l必过定点(2,0)、(﹣1,6).【应用1】见解析

【解析】试题分析

1、【尝试】(1)将t=2代入抛物线L中,化简,再配方,即可得到抛物线L的顶点坐标;

(2)将点A的横坐标x=2代入抛物线L的解析式中进行计算看y是否等于0,即可判断出点A是否在抛物线L上;

(3)将点B的横坐标x=-1代入抛物线L的解析式中计算出对应的y的值即可得到n的值;

2、【发现】将抛物线L的解析式展开可得: y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4由此可得x=2时,y=0;x=-1时,y=6;这就说明抛物线L总过定点A(2,0)和B(-1,6);

3、【应用】由【发现】可知,二次函数y=x2﹣3x+2和一次函数y=﹣2x+4再生二次函数必过点(2,0)和点(-1,6),因此检验这两个点是否都在二次函数y=﹣3x2+5x+2的图象上即可作出判断.

试题解析

1、【尝试】

(1)∵将t=2代入抛物线l中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,

∴此时抛物线的顶点坐标为:(1,﹣2).

(2)∵将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得 y=0,

∴点A(2,0)在抛物线l上.

(3)将x=﹣1代入抛物线l的解析式中,得:

n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.

2、【发现】

∵将抛物线E的解析式展开,得:

y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4

∴抛物线l必过定点A(2,0)、B(﹣1,6).

3、【应用】

x=2代入y=﹣3x2+5x+2,y=0,即点A在抛物线上.

x=﹣1代入y=﹣3x2+5x+2,计算得:y=﹣6≠6,即抛物线y=﹣3x2+5x+2不经过点B,

∴二次函数y=﹣3x2+5x+2不是二次函数y=x2﹣3x+2和一次函数y=﹣2x+4的一个再生二次函数”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,D是边AB上一点,E是边AC的中点,作CFABDE的延长线于点F

1)证明:ADE≌△CFE

2)若ABACDB2CE5,求CF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.

(1)a=   c=   

(2)若AC的中点为M,则点M表示的数为   

(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在高速公路上的一个测速点,仪器记录下过往车辆的行驶速度(单位:千米/),分析人员随机选取了10个速度数据如下:989910210597861051109591.求这组数据的平均数、中位数和众数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知两点在数轴上,点在原点的左边,表示的数为-15,点在原点的右边,且.点以每秒3个单位长度的速度从点出发向右运动.点以每秒2个单位长度的速度从点出发向右运动(点,点同时出发).

1)数轴上点对应的数是______,点到点的距离是______

2)经过几秒,原点是线段的中点?

3)经过几秒,点分别到点的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个正方体的表面涂上颜色.如图把正方体的棱等分,然后沿等分线把正方体切开,能够得到个小正方体,通过观察我们可以发现个小正方体全是个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到个小正方体,通过观察我们可以发现这些小正方体中有个是个面涂有颜色的,有个是个面涂有颜色的,有个是个面涂有颜色的,还有个各个面都没有涂色.

1)如果把正方体的棱等分,所得小正方体表面涂色情况如何呢?把正方体的棱等分呢?(请填写下表):

棱等分数

等分

等分

面涂色的正方体

___________

_____________

面涂色的正方体

__________

____________

面涂色的正方体

___________

____________

各个面都无涂色的正方体

___________

____________

2)请直接写出将棱等分时只有一个面涂色的小正方体的个数_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年)

甲公司:4555579121315

乙公司:66888910121415

丙公司:44467913151616.

请回答下列问题:

(1)填空:

平均数(单位:年)

众数(单位:年)

中位数(单位:年)

________

5

________

9.6

________

8.5

9.4

4

________

(2)如果你是顾客,你将选购哪家公司销售的产品,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠ABC30°,AD平分∠CABBC于点DCD1,延长ACE,使AEAB,连接DEBE

(1)BD的长;

(2)求证:DADE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3分别交x轴、y轴于A,C两点,抛物线y=ax2+bx+c(a≠0),经过A,C两点,与x轴交于点B(1,0).

(1)求抛物线的解析式;

(2)点D为直线AC上一点,点E为抛物线上一点,且D,E两点的横坐标都为2,点F为x轴上的点,若四边形ADEF是平行四边形,请直接写出点F的坐标;

(3)若点P是线段AC上的一个动点,过点P作x轴的垂线,交抛物线于点Q,连接AQ,CQ,求ACQ的面积的最大值.

查看答案和解析>>

同步练习册答案