精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC.
(1)四边形ABEC一定是什么四边形?
(2)证明你在(1)中所得出的结论.

【答案】
(1)解:四边形ABEC一定是平行四边形
(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,

∴AB=DC,AC=BD,

由折叠的性质可得:EC=DC,DB=BE,

∴EC=AB,BE=AC,

∴四边形ABEC是平行四边形.


【解析】(1)首先观察图形,然后由题意可得四边形ABEC一定是平行四边形;(2)由四边形ABCD为等腰梯形,AD∥BC,可得AB=DC,AC=BD,又由在平面内将△DBC沿BC翻折得到△EBC,可得EC=DC,DB=BE,继而可得:EC=AB,BE=AC,则可证得四边形ABEC是平行四边形.
【考点精析】本题主要考查了平行四边形的判定和等腰梯形的性质的相关知识点,需要掌握两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或化简

(1)(﹣6)÷|﹣|﹣(﹣1)3×(﹣7)

(2)﹣23×[(﹣)+]﹣6×(﹣2÷﹣()+(﹣

(3)x﹣2(x)+(﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:
(2)解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是(  )
A.25°或155°
B.50°或155°
C.25°或130°
D.50°或130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线C1:y=x2 . 如图(1),平移抛物线C1得到抛物线C2 , C2经过C1的顶点O和A(2,0),C2的对称轴分别交C1、C2于点B、D.

(1)求抛物线C2的解析式;
(2)探究四边形ODAB的形状并证明你的结论;
(3)如图(2),将抛物线C2向m个单位下平移(m>0)得抛物线C3 , C3的顶点为G,与y轴交于M.点N是M关于x轴的对称点,点P(﹣ m, m)在直线MG上.问:当m为何值时,在抛物线C3上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗.小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧.
(1)小明随机拿一个月饼,是莲蓉的概率是多少?
(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?

查看答案和解析>>

同步练习册答案