【题目】如图,在ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边CDE.
(1)如图1,若∠CDB=45°,AB=6,求等边CDE的边长;
(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.
①求证:CF⊥DF;
②如图3,将CFD沿CF翻折得CF,连接B,直接写出的最小值.
【答案】(1);(2)①证明见解析;②.
【解析】
(1)过点C作CH⊥AB于点 H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;
(2)①延长BC到N,使CN=BC,由“SAS”可证CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,DG∥CF,即可证四边形CFDG是矩形,可得结论;
②由“SAS”可证EFD≌BF,可得B=DE,则当CD取最小值时,有最小值,即可求解.
解:(1)如图1,过点C作CH⊥AB于点 H,
∵AC=BC,∠ACB=120°,CH⊥AB,
∴∠A=∠B=30°,AH=BH=3,
在RtBCH中,tan∠B=,
∴tan30°=
∴CH==,
∵∠CDH=45°,CH⊥AB,
∴∠CDH=∠DCH=45°,
∴DH=CH=,CD=CH=;
(2)①如图2,延长BC到N,使CN=BC,
∵AC=BC,∠ACB=120°,
∴∠A=∠ABC=30°,∠NCA=60°,
∵ECD是等边三角形,
∴EC=CD,∠ECD=60°,
∴∠NCA=∠ECD,
∴∠NCE=∠DCA,
又∵CE=CD,AC=BC=CN,
∴CEN≌CDA(SAS),
∴EN=AD,∠N=∠A=30°,
∵BC=CN,BF=EF,
∴CF∥EN,CF=EN,
∴∠BCF=∠N=30°,
∴∠ACF=∠ACB﹣∠BCF=90°,
又∵DG⊥AC,
∴CF∥DG,
∵∠A=30°,DG⊥AC,
∴DG=AD,
∴DG=CF,
∴四边形CFDG是平行四边形,
又∵∠ACF=90°,
∴四边形CFDG是矩形,
∴∠CFD=90°
∴CF⊥DF;
②如图3,连接B,
∵将CFD沿CF翻折得CF,
∴CD=C,DF=F,∠CFD=∠CF=90°,
又∵EF=BF,∠EFD=∠BF,
∴EFD≌BF(SAS),
∴B=DE,
∴B=CD,
∵当B取最小值时,有最小值,
∴当CD取最小值时,有最小值,
∵当CD⊥AB时,CD有最小值,
∴AD=CD,AB=2AD=2CD,
∴最小值=.
科目:初中数学 来源: 题型:
【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公共汽车线路每天运营毛利润(万元)与乘客量(万人)成一次函数关系,其图象如图所示.目前通过监测发现每天平均乘客量为0.6万人次,由于运营成本较高,这条线路处于亏损状态.(毛利润=票价总收入一运营成本)
(1)求该线路公共汽车的单程票价和每天运营成本分别为多少元.
(2)公交公司为了扭亏,若要使每天运营毛利润在0.2~0.4万元之间(包括0.2和0.4),求平均每天的乘客量的范围.
(3)据实际情况,发现该线路乘客量稳定,公交公司决定适当提高票价,当单程票价每提高1元时,每天平均乘客量相应减少0.05万人次,设这条线路的单程票价提高元().当为何值时,该线路每天运营总利润最大,并求出最大的总利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=10.
(1)求AB的长;
(2)求平行四边形ABCD的面积;
(3)求cos∠AEB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,AC为一条对角线,且.延长BC到点E,使,连接DE.
(1)判断四边形ACED的形状,并说明理由;
(2)连接AE交CD于点F,若,,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面中,给定线段AB和C,P两点,点C与点P分布在线段AB的异侧,满足,则称点C与点P是关于线段AB的关联点.在平面直角坐标系xOy中,已知点,,.
(1)在,,三个点中,点O与点P是关于线段AB的关联点的是________;
(2)若点C与点P是关于线段OA的关联点,求点P的纵坐标m的取值范围;
(3)直线与x轴,y轴分别交与点E,F,若在线段AB上存在点P与点O是关于线段EF的关联点,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:在平面直角坐标系中,经过点,且平行于直线或,叫过该点的“二维线”.例如,点的“二维线”有:,.
(1)写出点的“二维线”______;
(2)若点的“二维线”是,,求、的值;
(3)若反比例函数图像上的一个点有一条“二维线”是,求点的另一条“二维线”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com