【题目】探究:如图①,在四边形中,,,于点.若,求四边形的面积.
应用:如图②,在四边形中,,,于点.若,,,则四边形的面积为________.
【答案】
【解析】
探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;
应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.
解:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,
∵AE⊥CD,∠BCD=90°,
∴四边形AFCE为矩形,
∴∠FAE=90°,
∴∠FAB+∠BAE=90°,
∵∠EAD+∠BAE=90°,
∴∠FAB=∠EAD,
∵在△AFB和△AED中,
,
∴△AFB≌△AED(AAS),
∴AF=AE,
∴四边形AFCE为正方形,
∴S四边形ABCD=S正方形AFCE=AE2=102=100;
应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,
则∠ADF+∠ADC=180°,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADF,
∵在△ABE和△ADF中,
,
∴△ABE≌△ADF(AAS),
∴AF=AE=19,
∴S四边形ABCD=S△ABC+S△ACD
=BCAE+CDAF
=×10×19+×6×19
=95+57
=152.
故答案为:152.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是( )
A.AM=AN B.MN⊥AC
C.MN是∠AMC的平分线 D.∠BAD=120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:(a-b)2+b(3a-b)-a2,其中a=2,b=6;
(2) 已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,点是上任意一点,以为边作正方形.
①连接,求证:;
②连接,猜想的度数,并证明你的结论;
③设点在线段上运动,,正方形的面积为,正方形的面积为,试求与的函数关系式,并写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:在△ABC中,∠ABC=90°,AB=BC=2,AC=2,D是边AC上一点(D与A、C不重合),过点A作AE垂直AC,求满足AE=CD,联结DE交边AB于点F.
(1)试判断△DBE的形状,并证明你的结论.
(2)当点D在边AC上运动时,四边形ADBE的面积是否发生变化?若不变,求出四边形ADBE的面积;若改变,请说明理由.
(3)当△BDF是等腰三角形时,请直接写出AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲、乙两个不透明的布袋,甲袋中装有个完全相同的小球,分别标有数字,,,;乙袋中装有个完全相同的小球,分别标有数字,,;小宇从甲袋中随机摸出一个小球,记下数字为,小惠从乙袋中随机摸出一个小球,记下的数字为.
若点的坐标为,求点在第四象限的概率;
已知关于的一元二次方程,求该方程有实数根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com