精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC∠A=36°DEAC的垂直平分线.

1)求证:△BCD是等腰三角形;

2△BCD的周长是aBC=b,求△ACD的周长(用含ab的代数式表示)

【答案】1)见解析;(2a﹣b+b+b=a+b

【解析】试题分析:1)先由AB=ACA=36°,可求B=ACB==72°,然后由DEAC的垂直平分线,可得AD=DC,进而可得ACD=A=36°,然后根据外角的性质可求:CDB=ACD+A=72°,根据等角对等边可得:CD=CB,进而可证BCD是等腰三角形;

2)由(1)知:AD=CD=CB=b,由BCD的周长是a,可得AB=ab,由AB=AC,可得AC=ab,进而得到ACD的周长=AC+AD+CD=ab+b+b=a+b

1)证明:∵AB=AC∠A=36°

∴∠B=∠ACB==72°

∵DEAC的垂直平分线,

∴AD=DC

∴∠ACD=∠A=36°

∵∠CDB△ADC的外角,

∴∠CDB=∠ACD+∠A=72°

∴∠B=∠CDB

∴CB=CD

∴△BCD是等腰三角形;

2)解:∵AD=CD=CB=b△BCD的周长是a

∴AB=a﹣b

∵AB=AC

∴AC=a﹣b

∴△ACD的周长=AC+AD+CD=a﹣b+b+b=a+b

点睛:此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某小区①号楼与号楼隔河相望,李明家住在①号楼,他很想知道号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算号楼的高度CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点EAB的中点,连结DE

1)证明DE∥CB

2)探索ACAB满足怎样的数量关系时,四边形DCBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪得行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程组

(1) (2)

(3) (4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.

(1)若区域Ⅰ的三种瓷砖均价为300元/m2 , 面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2 , 且两区域的瓷砖总价为不超过12000元,求S的最大值;
(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等
①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2 , 乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场元旦期间举行优惠活动,对甲、乙两种商品实行打折出售,打折前,购买5间甲商品和1件乙商品需要84元,购买6件甲商品和3件乙商品需要108元,元旦优惠打折期间,购买50件甲商品和50件乙商品仅需960元,这比不打折前节省多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线ABy=﹣x+by轴于点A04),交x轴于点B

1)求直线AB的表达式和点B的坐标;

2)直线l垂直平分OBAB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n

①用含n的代数式表示ABP的面积;

②当SABP=8时,求点P的坐标;

③在②的条件下,以PB为斜边在第一象限作等腰直角PBC,求点C的坐标.

查看答案和解析>>

同步练习册答案