分析 (1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.
(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.
解答
解:(1)过点D作DF⊥AC于F;
∵AB为⊙D的切线,
∴∠B=90°
∴AB⊥BC
∵AD平分∠BAC,DF⊥AC
∴BD=DF
∴AC与⊙D相切;
(2)在△BDE和△DCF中,
∵BD=DF,DE=DC,
在Rt△BDE和Rt△DCF中,
$\left\{\begin{array}{l}{BD=DF}\\{DE=DC}\end{array}\right.$,
∴Rt△BDE≌Rt△DCF(HL),
∴EB=FC.
∵AB=AF,
∴AB+EB=AF+FC,
即AB+EB=AC.
点评 本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1.8(1+x)=5 | B. | 1.8(1+2x)=5 | ||
| C. | 1.8(1+x)2=5 | D. | 1.8(1+x)+1.8(1+x)2=5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 对顶角相等 | |
| B. | 过任意一点可作已知直线的一条平行线 | |
| C. | 两点之间线段最短 | |
| D. | 同一平面内,过一点有且只有一条直线与已知直线垂直 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com