精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,直线lyx1x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、正方形AnBnnCn+1,使得点A1A2A3在直线l上,点C1C2C3y轴正半轴上,则点B的坐标是_____,点Bn的坐标是_____

【答案】(47) (2n12n1)

【解析】

根据一次函数图象上点的坐标特征找出A1A2A3A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.

解:∵直线lyx1x轴交于点A

A110),

观察,发现:A110),A221),A343),A487),

An2n12n11)(n为正整数).

观察图形可知:B111),B223),B347),

Bn是线段CnAn+1的中点,

∴点Bn的坐标是(2n12n1).

故答案为:(47),(2n12n1)(n为正整数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形

1)如图,在中,,过作一直线交,若分割成两个等腰三角形,则的度数是______

2)已知在中,,过顶点和顶点对边上一点的直线,把分割成两个等腰三角形,则的最小度数为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,抛物线)与直线交于点(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线之比称为惊喜度(Degree of surprise),记作.

1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? .

2)如果抛物线)沿直线翻折后所得惊喜线的惊喜度为1,求的值.

3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的角平分线CDBE相交于FA90°EGBC,且CGEGG,下列结论:①∠CEG2DCB②∠DFBCGE③∠ADCGCDCA平分∠BCG.其中正确的结论是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.

(1)求坡底C点到大楼距离AC的值;

(2)求斜坡CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点B(1210),过点Bx轴的垂线,垂足为A.作y轴的垂线,垂足为C.点DO出发,沿y轴正方向以每秒1个单位长度运动;点EO出发,沿x轴正方向以每秒3个单位长度运动;点FB出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动,运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t

1)用含t的代数式分别表示点E和点F的坐标;

2)若△ODE与以点AEF为顶点的三角形相似,求t的值;

3)当t2时,求O′点在坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.

如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?

的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线yax2+bx+c经过A0,﹣4)和B20)两点.

1)求c的值及ab满足的关系式;

2)若抛物线在AB两点间,从左到右上升,求a的取值范围;

3)抛物线同时经过两个不同的点Mpm),N(﹣2pn).

①若mn,求a的值;

②若m=﹣2p3n2p+1,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点By轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为(  )

A. B. 3 C. D. 5

查看答案和解析>>

同步练习册答案