精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,AB⊙O的直径,点C⊙O上一点,OF⊥BC于点F,交⊙O于点EAEBC交于点H,点DOE的延长线上一点,且∠ODB=∠AEC

1)求证:BD⊙O的切线;

2)求证:CE2=EHEA

3)若⊙O的直径为5sinA=,求BH的长.

【答案】1)证明见试题解析;(2)证明见试题解析;(3

【解析】试题分析:(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;

(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;

(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.

试题解析:(1)∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,

∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,

即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;

(2)连接AC,如图1所示:

∵OF⊥BC,∴, ∴∠CAE=∠ECB,

∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EHEA;

(3)连接BE,如图2所示:

∵AB是⊙O的直径,∴∠AEB=90°,

∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=ABsin∠BAE=5×=3,∴EA==4,

,∴BE=CE=3,∵CE2=EHEA,∴EH=

∴在Rt△ BEH中,BH==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列几何图形中,既是轴对称图形又是中心对称图形的是(

A.等腰三角形B.等边三角形C.菱形D.正五边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A=x3﹣2y3+3x2y+xy2﹣3xy+4,B=y3﹣x3﹣4x2y﹣3xy﹣3xy2+3,C=y3+x2y+2xy2+6xy﹣6,试说明对于x、y、z的任何值A+B+C是常数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:﹣2x3+18x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.

(1)求证:CE=AD;

(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①相等的角是对顶角;②平面内,过一点有且只有一条直线与已知直线垂直;③ 平行于同一条直线的两条直线互相平行; ④同角或等角的余角相等,其中正确的说法有(

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算9992的结果是(  )

A. 990801 B. 989001 C. 819901 D. 998001

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段abcd成比例线段,其中a=3cmb=4cmc=6cm,则d=_____cm

查看答案和解析>>

同步练习册答案