分析 由菱形的性质和已知条件得出∠B=45°,得到△BCE为等腰直角三角形,根据等腰直角三角形的性质得CE=$\frac{\sqrt{2}}{2}$BC,即可得出结果.
解答 解:如图所示,
菱形ABCD的边长BC=$\sqrt{2}$,CE为高,∠B:∠A=1:3,
∵AD∥BC,
∴∠A+∠B=180°,
∴∠B+3∠B=180°,
∴∠B=45°,
∵CE⊥AB,
∴△BCE为等腰直角三角形,
∴BC=$\sqrt{2}$CE,
∴CE=$\frac{\sqrt{2}}{2}$BC=$\frac{\sqrt{2}}{2}$×$\sqrt{2}$=1.
故答案为:1.
点评 本题考查了菱形的性质、等腰直角三角形的判定与性质;熟练掌握菱形的性质,证明三角形是等腰直角三角形是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3.2m | B. | 4.8m | C. | 6.4m | D. | 8m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com