精英家教网 > 初中数学 > 题目详情

【题目】折纸不仅可以帮助我们进行证明,还可以帮助我们进行计算.小明取了一张正方形纸片,按照如图所示的方法折叠(如图①②③):

重新展开后得到如图所示的正方形ABCD(如图④),BD、BE、EF为前面折叠的折痕.小亮观察之后发现利用这个图形可以求出45°、22.5°等角的三角函数值.请你直接写出tan67.5°=_____

【答案】

【解析】

EC=x,根据折叠的性质求出∠BEC=67.5°,DE=x,根据正切的概念计算即可

EC=x,

由折叠的性质可知,EF=EC=x,BFE=C=90°,BDC=45°,EBC=22.5°,

DE=EF=x,BEC=67.5°,

CD=x+x,

由正方形的性质可知,BC=CD=x+x,

tan67.5°=tanBEC==

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:

鞋的号码

35.5

36

36.5

37

37.5

人数

4

6

16

12

2

现在该经销商要进200双上述五种女运动鞋,你认为应该怎样进货比较合理?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点Ax1y1)、Bx2y2在二次函数y=x2+mx+n的图象上x1=1x2=3y1=y2

1①求m②若抛物线与x轴只有一个公共点n的值

2Pab1),Q3b2)是函数图象上的两点b1b2求实数a的取值范围

3若对于任意实数x1x2都有y1+y2≥2n的范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,平分,交,下列结论:①;②;③;④,其中正确的结论有____________. (填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y= (x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)连接OC,若BD=BC,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点BD分别在ANAM上,连接BD

【发现】

1)如图1,若∠ABC=ADC=90°,则∠BCD=   °CBD   三角形;

【探索】

2)如图2,若∠ABC+ADC=180°,请判断CBD的形状,并证明你的结论;

【应用】

3)如图3,已知∠EOF=120°OP平分∠EOF,且OP=1,若点GH分别在射线OEOF上,且PGH为等边三角形,则满足上述条件的PGH的个数一共有   .(只填序号)

2344个以上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为

1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的

2)画出将绕点按顺时针方向旋转90°得到的

3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是(  )

A. 作∠APB的平分线PCAB于点C

B. 过点PPCAB于点CAC=BC

C. AB中点C,连接PC

D. 过点PPCAB,垂足为C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,两个不全等的等腰直角三角形叠放在一起,并且有公共的直角顶点.

1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.

2)将图1绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.

查看答案和解析>>

同步练习册答案