【题目】折纸不仅可以帮助我们进行证明,还可以帮助我们进行计算.小明取了一张正方形纸片,按照如图所示的方法折叠(如图①②③):
重新展开后得到如图所示的正方形ABCD(如图④),BD、BE、EF为前面折叠的折痕.小亮观察之后发现利用这个图形可以求出45°、22.5°等角的三角函数值.请你直接写出tan67.5°=_____.
科目:初中数学 来源: 题型:
【题目】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:
鞋的号码 | 35.5 | 36 | 36.5 | 37 | 37.5 |
人数 | 4 | 6 | 16 | 12 | 2 |
现在该经销商要进200双上述五种女运动鞋,你认为应该怎样进货比较合理?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(x1,y1)、B(x2,y2)在二次函数y=x2+mx+n的图象上,当x1=1、x2=3时,y1=y2.
(1)①求m;②若抛物线与x轴只有一个公共点,求n的值.
(2)若P(a,b1),Q(3,b2)是函数图象上的两点,且b1>b2,求实数a的取值范围.
(3)若对于任意实数x1、x2都有y1+y2≥2,求n的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y= (x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)连接OC,若BD=BC,求OC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.
【发现】
(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是 三角形;
【探索】
(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;
【应用】
(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有 .(只填序号)
①2个②3个③4个④4个以上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
(1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
(2)画出将绕点按顺时针方向旋转90°得到的;
(3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A. 作∠APB的平分线PC交AB于点C
B. 过点P作PC⊥AB于点C且AC=BC
C. 取AB中点C,连接PC
D. 过点P作PC⊥AB,垂足为C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,两个不全等的等腰直角三角形和叠放在一起,并且有公共的直角顶点.
(1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.
(2)将图1中绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com