精英家教网 > 初中数学 > 题目详情
如图,点P、Q分别为矩形ABCD中AB、BC上两点,AB=18cm、AD=4cm,AP=2x,BQ=x,设△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式;
(2)求△PBQ的面积取值范围.
考点:二次函数的应用
专题:几何图形问题
分析:(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;
(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值,从而确定三角形的面积的最值.
解答:解:(1)∵S△PBQ=
1
2
PB•BQ,PB=AB-AP=18-2x,BQ=x,
∴y=
1
2
(18-2x)x,
即y=-x2+9x(0<x≤4);

(2)由(1)知:y=-x2+9x,
∴y=-(x-
9
2
2+
81
4

∵当0<x≤
9
2
时,y随x的增大而增大,
而0<x≤4,
∴当x=4时,y最大值=20,
即△PBQ的取值范围0<x≤20.
点评:本题考查了矩形的性质及二次函数的应用,二次函数的最值问题,根据题意表示出PB、BQ的长度是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为(  )
A、4
B、2
C、
3
D、
2

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下面一列数,根据规律写出横线上的数,-
1
1
1
2
;-
1
3
1
4
 
 
;…;第2003个数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某公园中有一块长a米,宽b米的长方形草坪,为方便游客穿行同时也避免草坪被随意践踏,草坪上用石子铺设了一条宽度均为1米的小径,求铺设小径后草坪(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读理解并填空:
我们画图可知道,一次函数y=x-1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到;类似的,函数y=
1
x+2
的图象可以由反比例函数y=
1
x
的图象向左平移2个单位长度得到.则反比例函数y=
1
x
的图象向右平移2个单位长度后的图象解析式是
 

解决问题:
如图,已知反比例函数y=
6
x
的图象与直线y=ax(a≠0)相交于点A(2,3)和点B.
(1)求a的值,并写出点B的坐标;
(2)若将反比例函数y=
6
x
的图象向右平移n(n 为整数,且n>0)个单位长度后,经过点M(7,
3
2
):
①求n的值及反比例函数y=
6
x
平移后的图象对应的解析式;
②利用图形直接写出不等式
6
x-n
≤ax的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察如表三行数的规律,回答下列问题:
  第1列 第2列第3列 第4列第5列 第6列
 第1行-2 4-8 a-32 64
 第2行 0 6-6 16-30 66
 第3行-12-48-16b
(1)第1行的第四个数a是
 
;第3行的第六个数b是
 

(2)若第1行的某一列的数为c,则第2行与它同一列的数为
 

(3)已知第n列的三个数的和为5037,若设第1行第n列的数为x,试求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC绕点
 
按逆时针方向旋转一个角度得到△ABˊCˊ.旋转角是
 
,B的对应点是
 
,线段AC的对应线段是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,G是AC的中点,M是AB的中点,N是BC的中点,那么下列四个等式中,不成立的是(  )
A、MN=GC
B、MG=
1
2
(AC-AB)
C、GN=
1
2
(AC-CB)
D、MN=
1
2
(AC+GB)

查看答案和解析>>

科目:初中数学 来源: 题型:

比较下列各组数的大小:
(1)
120
与11.
(2)
5
+1
2
与2.

查看答案和解析>>

同步练习册答案