精英家教网 > 初中数学 > 题目详情
12.计算:
(1)$\sqrt{{{({-2})}^2}}-|{-1}|+{({2012-π})^0}-{({\frac{1}{2}})^{-1}}$
(2)(m2n-3-2•(3m-5n23(把结果化成只含有正整指数幂的形式)

分析 (1)原式第一项利用二次根式性质计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算即可得到结果;
(2)原式利用幂的乘方与积的乘方运算法则计算,再利用负整数指数幂法则计算即可得到结果.

解答 解:(1)原式=2-1+1-2=0;
(2)原式=m-4n6•27m-15n6=$\frac{27{n}^{12}}{{m}^{19}}$.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.三名同学分别沿AB折叠纸条,哪名间学的折法一定能判定两条边线a,b互相平行?为什么?
小明:如图1,展开后测得∠1=∠2
小红:如图2,展开后测得∠1=∠2且∠3=∠4.
小刚:如图3,测得∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,△ABC中,D为边AB的中点,E为边BC上一点,ED延长线交CA延长线于点F,以下结论正确的有②④.
①若AB=BC,BE=DE,则AF=AD;
②若∠ACB=90°,CE=DE,则AD•BD=CE•CB;
③当$\frac{BE}{CE}$=$\frac{1}{3}$时,则$\frac{FA}{AC}$=$\frac{1}{3}$;
④当$\frac{CA}{CF}$=x,$\frac{CB}{CE}$=y时,则x+y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知∠1=98°,∠2=∠3=82°,试说明:a∥b,c∥d.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解不等式组并把解集在数轴上表示出来.
(1)$\left\{\begin{array}{l}{3x-(x-2)≥6}\\{x+1>\frac{4x-1}{3}}\end{array}\right.$.
(2)$\left\{\begin{array}{l}{2x-1≥3}\\{2+2x≥1+x}\end{array}\right.$.
(3)$\left\{\begin{array}{l}4x>2x-6\\ \frac{x-1}{3}≤\frac{x+1}{9}\end{array}\right.$,
(4)$\left\{\begin{array}{l}{\frac{1}{3}x-2(x-2)≥4}\\{\frac{1-2x}{3}>x+2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知AB是⊙O的直径,P为BA延长线上一点,PC切⊙O于C,若⊙O的半径是4cm,∠P=30°,图中阴影部分的面积是8$\sqrt{3}$-$\frac{8}{3}π$(cm2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算题
(1)$4\sqrt{5}+\sqrt{45}-\sqrt{8}+4\sqrt{2}$     (2)($\sqrt{2}-\sqrt{3}$)+2$\sqrt{\frac{1}{3}}$×3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠ACB=90°,以BC为直径画⊙O,交斜边AB于点E,点D为AC中点,连接OD,DE.
(1)求证:DE是⊙O的切线;
(2)已知AC=6,tan∠ABC=$\frac{3}{4}$,则△ADE的周长是$\frac{48}{5}$,其面积是$\frac{54}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,在平面直角坐标系中,直线y=$\frac{3}{4}x-\frac{3}{2}$与抛物线y=-$\frac{1}{4}{x}^{2}+bx+c$交于A、B两点,点A在x轴上,点B的横坐标为-8,与y轴交于点M.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①如图2,设△PDE的周长为l,点P的横坐标为x,则x的取值范围是-8<x<2,求l与x的函数关系式,并求出l的最大值;
②如图3,连接PA,以PA为边作图示一侧的正方形APFG,随着点P的运动,正方形的大小、位置也随之改变,当顶点F或G恰好在y轴上时,直接写出对应的点P的坐标.

查看答案和解析>>

同步练习册答案