精英家教网 > 初中数学 > 题目详情
1.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D,过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE,对于下列结论:①AD=DC;②△CBA∽△CDE;③$\widehat{BD}$=$\widehat{AD}$;④AE为⊙O的切线,一定正确的结论选项是①②④.

分析 根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定$\widehat{BD}$与$\widehat{AD}$相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.

解答 解:∵AB为直径,
∴∠ADB=90°,
∴BD⊥AC,
而AB=CB,
∴AD=DC,所以①正确;
∵AB=CB,
∴∠1=∠2,
而CD=ED,
∴∠3=∠4,
∵CF∥AB,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4,
∴△CBA∽△CDE,所以②正确;
∵△ABC不能确定为直角三角形,
∴∠1不能确定等于45°,
∴$\widehat{BD}$和$\widehat{AD}$不能确定相等,所以③错误;
∵DA=DC=DE,
∴点E在以AC为直径的圆上,
∴∠AEC=90°,
∴CE⊥AE,
而CF∥AB,
∴AB⊥AE,
∴AE为⊙O的切线,所以④正确.
故答案为①②④.

点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,如果一个正方体的体积变为原来的27倍,那么它的棱长发生了怎样的变化?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图①,已知直线y=3x+3与x轴交于点A,与y轴交于点D,与直线y=$\frac{3}{4}$x交于点E,过点D作DC∥x轴,交直线y=$\frac{3}{4}$x于点C.过点C作CB∥AD交x轴于点B.(1)点C的坐标是(4,3);
(2)以线段AD的中点M为圆心作⊙M,当⊙M与直线CE相切时,求⊙M的半径;
(3)如图②,点P从点O出发,沿线段OC向终点C运动,点Q从点C出发,沿线段CD向终点D运动.若P、Q两点同时出发,速度均为1单位长度/s,时间为ts,当点Q到达终点时,P、Q两点均停止运动.在点P、Q的运动过程中,将线段PQ绕点P沿顺时针方向旋转90°后,设点Q的对应点为R.当点R落在四边形ABCD一边所在的直线上时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,双曲线y=$\frac{k}{x}$(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(3,4),则△OAB的面积为18.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图所示,有以下三个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这三个条件中任选两个作为假设,另一个作为结论,则组成真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某班有50名学生,其中有26名男生和24名女生,在某次劳动时该班分成甲、乙两组,甲组30人,乙组20人.
(1)若设甲组有男生x人,请你用x的代数式表示:
①甲组女生的人数是30-x;
②乙组男生的人数是26-x;
③乙组女生的人数是x-6.
(2)小亮是一个爱动脑筋的学生,他说按上面分组,无论男女如何分,甲组中的男生总比乙组中的女生多6人,他说的对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:x2-3x+1=0,求$\sqrt{x}+\frac{1}{{\sqrt{x}}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,AE∥FD,AE=FD,要使△EAC≌△FDB,则应补充条件∠E=∠F(填写一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知xm=6,xn=4,则xm+n的值为24.

查看答案和解析>>

同步练习册答案