分析 (1)由题意,等号的左边表示的是长方形的面积,等号的右边表示的是长方形里面的小图形的面积和;故问题可求.
(2)由(a+b)(a+3b)=a2+4ab+3b2可知,图形的两个边长为a+b和a+3b;里边的小图形有八个,一个面积为a2,4个面积为ab,3个面积为b2.
(3)假设应多余出1张A类卡片,则这三类卡片的面积为3m2+4mn+2n2,此式不为完全平方式,即不能拼成一个正方形;假设应多余出1张B型卡片,则这三类卡片的面积为4m2+3mn+2n2,此式不为完全平方式,即不能拼成一个正方形;假设应多余出1张C类卡片,则这三类卡片的面积为4m2+4mn+n2,此式为完全平方式,即能拼成一个正方形.
解答 解:(1)由题意,可得:(a+a+b)(b+a+b)=ab+a2+b2+a2+ab+ab+b2+ab+ab,
整理,得:(2a+b)(a+2b)=2a2+5ab+2b2.
故答案为::(2a+b)(a+2b)=2a2+5ab+2b2.
(2)由(a+b)(a+3b)=a2+4ab+3b2可知,图形的两个边长为a+b和a+3b;里边的小图形有八个,一个面积为a2,4个面积为ab,3个面积为b2.![]()
(3)假设应多余出1张A类卡片,则这三类卡片的面积为3m2+4mn+2n2,此式不为完全平方式,即不能拼成一个正方形;假设应多余出1张B型卡片,则这三类卡片的面积为4m2+3mn+2n2,此式不为完全平方式,即不能拼成一个正方形;假设应多余出1张C类卡片,则这三类卡片的面积为4m2+4mn+n2,此式为完全平方式,即能拼成一个正方形.
(2m+n)2=4m2+4mn+n2,
故答案为:C,(2m+n)2.
点评 本题考查了完全平分公式的几何背景,本题的解答,须注意观察图形和等式的关系,规律:大长方形的面积=小图形的面积和.
科目:初中数学 来源: 题型:选择题
| A. | 3$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com