【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点,有下列结论:
①abc0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c0; ⑤a﹣b≥m(am﹣b);
其中所有正确的结论是______.(填写正确结论的序号)
【答案】③④⑤
【解析】
根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.
由抛物线的开口向下可得:a<0,
根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,
根据抛物线与y轴的交点在正半轴可得:c>0,
∴abc>0,故①错误;
∵抛物线过点过点,
∴,
∴a+2b+4c=0,故②错误;
∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点,
∴抛物线与x轴的另一个交点坐标为(,0),
当x=时,y=0,即,
整理得:25a﹣10b+4c=0,故③正确;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④正确;
∵x=﹣1时,函数值最大,
∴a﹣b+cm2a﹣mb+c,
∴a﹣bm(am﹣b),所以⑤正确;
故答案为:③④⑤.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=3,点P是边AB上的一动点,连接DP,
(1)若将△DAP沿DP折叠,点A落在矩形的对角线上点A处,试求AP的长;
(2)点P运动到某一时刻,过点P作直线PE交BC于点E,将△DAP与△PBE分别沿DP与PE折叠,点A与点B分别落在点A,B处,若P,A,B三点恰好在同一直线上,且AB=2,试求此时AP的长.
(3)当点P运动到边AB的中点处时,过点P作直线PG交BC于点G,将△DAP与△PBG分别沿DP与PG折叠,点A与点B重合于点F处,请直接写出F到BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.
(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD= ;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是 ;(整点指横坐标、纵坐标都为整数的点)
(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列判断正确的是( ).
A.数据3,5,4,1,-2的中位数为4
B.从初三月考成绩中抽取100名学生的数学成绩,这100名学生是总体的一个样本
C.甲、乙两人各射靶5次,已知方差,,那么乙的射击成绩较稳定
D.了解云南省昆明市居民疫情期间的出行方式,采用全面调查的方式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关于函数的四个命题:
①当x=0时,y有最小值12;
②n为任意实数,x=3+n时的函数值大于x=3-n时的函数值;
③若n>3,且n是整数,当时,y的整数值有个;
④若函数图象过点和,其中a>0,b>0,则a<b.
其中真命题的序号是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为测量某条河的宽度BC,工程队用无人机在距地面高度为200米的A处测得B,C两点的俯角分别为30°和45°,且点B,C,D在同一水平直线上,求A,C之间的距离和这条河的宽度BC.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,射线从与射线重合的位置开始,绕点按顺时针方向旋转,与射线重合时就停止旋转,射线与线段相交于点,点是线段的中点.
(1)求线段的长;
(2)①当点与点、点不重合时,过点作于点,于点,连接,,在射线旋转的过程中,的大小是否发生变化?若不变,求的度数;若变化,请说明理由.
②在①的条件下,连接,直接写出面积的最小值____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com