精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABD、△AEC都是等边三角形,连接BEDC交于O

(1)求证:BE=DC

(2) 求∠DOB度数

【答案】1)见解析;(260

【解析】

1)根据等边三角形的性质和SAS证明△DAC≌△BAE即可;

2)如图,由(1)的结论可得∠ADC=ABE,再在△ADHOBH中利用三角形的内角和定理即可求出结果.

1)证明:∵在等边△ABD中,有AD=AB,∠DAB=60°

在等边△AEC中,有AC=AE,∠EAC=60°

∴∠DAB=EAC

∴∠DAC=BAE

DACBAE中,

∴△DAC≌△BAESAS),

DC=BE

2)如图,∵△DAC≌△BAE

∴∠ADC=ABE

又∵∠AHD=OHB

∴∠DOB=DAB=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】实验中学为了了解今年参加中招考试九年级300名学生的体育成绩,特对学生参加课外锻炼的情况进行了摸底,随机对九年级30名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分钟)

(1)补全频数分布表和频数分布直方图.

(2)填空:在这个问题中,总体是___________,样本是_________

由统计分析得,这组数据的平均数是39.37(分),众数是______,中位数是______

(3)如果描述该校300名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?

(4)估计实验中学九年级有多少名学生,平均每天参加课外锻炼的时间多于30分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标是(0,6),点B的坐标是(6,0).

(1)如图1,点C的坐标是(﹣2,0),BDACDy轴于点E.求点E的坐标;

(2)在(1)的条件下求证:OD平分∠CDB

(3)如图2,点FAB中点,点Gx正半轴点B右侧一动点,过点FFG的垂线FH,交y轴的负半轴于点H,那么当点G的位置不断变化时,SAFHSFBG的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是(  )

A. 此抛物线的解析式是y=﹣x2+3.5

B. 篮圈中心的坐标是(4,3.05)

C. 此抛物线的顶点坐标是(3.5,0)

D. 篮球出手时离地面的高度是2m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DBCB的延长线于G.

(1)求证:△CDB≌△BAG.

(2)如果四边形BFDE是菱形,那么四边形AGBD是什么特殊四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:RtABC,C=90°,ABC=30°.

(1)探究应用1:如图1,RtABC,C=90°,ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BEDE之间的数量关系,组长已经添加了辅助线:取AB的中点F,连接EF.线段BEDE之间的数量关系是_________,并说明理由;

(2)探究应用2:如图2,RtABC,C=90°,ABC=30°,点D在线段CB的延长线上,以AD为边作等边△ADE,连接BE.线段BEDE之间的数量关系是__________,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,观察图象解决下列问题:

(1)点B的坐标是_____,B点表示的实际意义是_____

(2)求线段BC对应的函数关系式和D点坐标;

(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?

(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后yx之间的函数关系的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校体育课外活动兴趣小组,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

1)这次被调查的学生共有   人,在扇形统计图中“D”对应的圆心角的度数为   

2)请你将条形统计图补充完整;

3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°,直线l过点C

1)当ACBC时,如图1,分别过点ABAD⊥直线l于点DBE⊥直线l于点 E.△ACD与△CBE是否全等,并说明理由;

2)当AC9cmBC6cm时,如图2,点B与点F关于直线l对称,连接BFCF,点MAC上,点NCF上一点,分别过点MNMD⊥直线l于点DNE⊥直线l于点E,点MA点出发,以每秒1cm的速度沿AC路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿FCBCF路径运动,终点为F,点MN同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒.

当△CMN为等腰直角三角形时,求t的值;

当△MDC与△CEN全等时,求t的值.

查看答案和解析>>

同步练习册答案