精英家教网 > 初中数学 > 题目详情

【题目】如图,在O中,AB是直径,AD是弦,ADE = 60°C = 30°

判断直线CD是否是O的切线,并说明理由;

CD = ,求BC的长.

【答案】(1)CD是⊙O的切线

证明:如图,OD

∵∠ADE=60°,∠C=30°∴∠A=30°

∵OA=OD∴∠ODA=∠A=30°

∴∠ODE=∠ODA+∠ADE=30°+60°=90°∴OD⊥CD

∴CD是⊙O的切线

(2)解:在Rt△ODC中,∠ODC=90°, ∠C=30°, CD=

∵tanC=

∴OD=CD·tanC=×=3.

∴OC=2OD =6

∵OB=OD=3,∴BC=OC-OB=6-3=3

【解析】(1)根据切线的判定定理,连接OD,只需证明OD⊥CD,根据三角形的外角的性质得∠A=30°,再根据等边对等角得∠ADO=∠A,从而证明结论;

(2)在30°的直角三角形OCD中,求得OD,OC的长,则BC=OC-OB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】直觉的误差:有一张8cm×8cm的正方形纸片,面积是64cm2.把这些纸片按图1所示剪开成四小块,其中两块是三角形,另外两块是梯形.把剪出的4个小块按图2所示重新拼合,这样就得到了一个13cm×5cm的长方形,面积是65cm2,面积多了1cm2,这是为什么?

小明给出如下证明:如图2,可知,tanCEFtanEAB,∵tanCEFtanEAB,∴∠CEF>∠EAB,∵EFAB,∴∠EAB+AEF180°,∴CEF+AEF180°,因此AEC三点不共线.同理AGC三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm2

1)小红给出的证明思路为:以B为原点,BC所在的直线为x轴,建立平面直角坐标系,证明三点不共线.请你帮小红完成她的证明;

2)将13cmx13cm的正方形按上述方法剪开拼合,是否可以拼合成一个长方形,但面积少了1cm2?如果能,求出剪开的三角形的短边长;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点AACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠A60°,AC2DAB边上一个动点(不与点AB重合),EBC边上一点,且∠CDE30°.设ADxBEy,则下列图象中,能表示yx的函数关系的图象大致是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CEDF,下列说法不正确的是  

A. 四边形CEDF是平行四边形

B. 时,四边形CEDF是矩形

C. 时,四边形CEDF是菱形

D. 时,四边形CEDF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是☉O的直径,点在☉O上,过点C的切线与AB的延长线交于点P,连接AC,过点OODAC交☉O于点D,连接CD.若∠A=30°PC=6,CD的长为   

A. B. C. 3D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品中,大笔记本购买的数量是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A,则点A的坐标是( )

A. 3,1 B. (3,-1 C. 1,3 D. (1,-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场用24000元购入一批空调然后以每台3000元的价格销售因天气炎热空调很快售完商场又以52000元的价格再次购入该种型号的空调数量是第一次购入的2但购入的单价上调了200售价每台也上调了200

1商场第一次购入的空调每台进价是多少元?

2商场既要尽快售完第二次购入的空调又要在这两次空调销售中获得的利润率不低于22%打算将第二次购入的部分空调按每台九五折出售最多可将多少台空调打折出售?

查看答案和解析>>

同步练习册答案