【题目】如图,抛物线经过点,,对称轴为直线,与轴的另一个交点为点.
(1)求抛物线的解析式;
(2)点从点出发,沿向点运动,速度为1个单位长度/秒,同时点从点出发,沿向点运动,速度为2个单位长度/秒,当点、有一点到达终点时,运动停止,连接,设运动时间为秒,当为何值时,的面积最大,并求出的最大值;
(3)点在轴上,点在抛物线上,是否存在点、,使得以点、、、为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点坐标,若不存在,请说明理由.
【答案】(1);(2)当时,最大值为;(3)存在满足条件的点有4个,分别是,,,.
【解析】
(1)利用待定系数法即可求得a、b、c的值,即可求得抛物线解析式.
(2)利用对称轴和B点坐标,求得A点坐标(-2,0),所以是等腰直角三角形,过点作轴于点.设点N的运动时间为t,用含t的代数式分别表示AN、AM,;,代入可得关于t的二次函数关系式,利用顶点式,求得最值即可.
(3)分情况讨论:利用平行线四边形性质,三角形相似即可得出.
(1)解:依题意得
,解得:,∴抛物线的解析式为:.
(2)∵对称轴为直线,.
∴,则,
当点运动秒时,,则,
过点作轴于点.
∵,∴是等腰直角三角形,
∴.
又∵,∴是等腰直角三角形,,
当点运动秒时,,
∴,
∴,
当时,最大值为.
(3)存在满足条件的点有4个,分别是,,,.
科目:初中数学 来源: 题型:
【题目】已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;
(2)求使﹣2的值为整数的实数k的整数值;
(3)若k=﹣2,λ=,试求λ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某海盗船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处使,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,求出此时海监船与岛屿P之间的距离(即PC的长,结果精确到0.1)(参考数据:≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于点,对称轴为直线,,下列结论:①;②9a+3b+c=0;③若点,点是此函数图象上的两点,则;④.其中正确的个数( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(﹣2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0),C(0,-3)
(1) 求抛物线的解析式;
(2) 若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
(3) 若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角三角形中,,,在边上取一点,使得,点、分别是线段、的中点,连接和,作,交于点,如图1所示.
(1)请判断四边形是什么特殊的四边形,并证明你的结论;
(2)将绕点顺时针旋转到,交线段于点,交于点,如图2所示,请证明:;
(3)在第(2)条件下,若点是中点,且,,如图3,求的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com