【题目】如图,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)求出二次函数表达式;
(2)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请求出此时点N的坐标.
【答案】(1) y=﹣x2+x+4;(2) (3,0);(3)N(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).
【解析】
(1)根据待定系数法即可求得;
(2)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),构建二次函数,根据函数解析式求得即可;
(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标.
解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),
∴ ,
解得 .
∴抛物线表达式: ;
(2)令y=0,则 ,
解得x1=8,x2=﹣2,
∴点B的坐标为(﹣2,0).
又∵A(0,4),C(8,0),
∴,
∴AB2+AC2=BC2,
∴∠BAC=90°.
∴AC⊥AB.
∵AC∥MN,
∴MN⊥AB.
设点N的坐标为(n,0),则BN=n+2,
∵MN∥AC,
△BMN∽△BAC
∴,
∴,
,
,
∵S△AMN=AMMN
=
=,
当n=3时,△AMN面积最大是5,
∴N点坐标为(3,0).
∴当△AMN面积最大时,N点坐标为(3,0).
(3)由(2)知,AC= ,
①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),
②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(,0)或(,0)
③作AC的垂直平分线交AC于P,交x轴于N,
∴△AOC∽△NPC.
∴即 .
∴CN=5.
∴此时N的坐标为(3,0),
综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(,0)、(3,0)、(,0).
科目:初中数学 来源: 题型:
【题目】已知函数y=-x2+(m-1) x+m (m为常数),其顶点为M.
(1)请判断该函数的图像与x轴公共点的个数,并说明理由;
(2)当-2≤m≤3时,求该函数的图像的顶点M纵坐标的取值范围;
(3)在同一坐标系内两点A(-1,-1)、B(1,0),△ABM的面积为S,当m为何值时,S的面积最小?并求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】碑林书法社小组用的书法练习纸(毛边纸可以到甲商店购买,也可以到乙商店购买已知两商店的标价都是每刀20元(每刀100张),但甲商店的优惠条件是:若购买不超过10刀,则按标价买,购买10以上,从第11刀开始按标价的七折卖;乙商店的优惠条件是:购买一只9元的毛笔,从第一刀开始按标价的八五折卖.购买刀数为(刀),在甲商店购买所需费用为元,在乙商店购买所需费用为元.
(1)写出、与之间的函数关系式.
(2)求在乙商店购买所需总费用小于甲商店购买所需总费用时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线M:y=- x2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x轴交于A、B两点,M'的顶点记为C,则∠ACB=( )
A.45°B.60°C.90°D.120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线经过点A(3,0)和点B(0,2).
(1)求直线的解析式;
(2)直线与函数的图象交于点C(C在第二象限),若ΔCOB的面积与ΔAOB的面积相等,求出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】内接于,,连接;
(1)如图1,连接并延长交于点,连接,求证:;
(2)如图2,延长交于点H,点F为BH上一点,连接AF,若,求证:;
(3)在(2)的条件下,如图3,点E为AB上一点,点D为上一点,连接、,若,若,,,连接,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com