分析 (1)若购买x件(10<x<60),每件的单价=140-(购买数量-10),依此可得y关于x的函数关系式;
(2)设第一批购买x件,则第二批购买(100-x)件,分两种情况:①当30<x≤40时,则60≤100-x<100;②当40<x<60时,则40<100-x<60;根据购买两批T恤衫一共花了9200元列出方程求解即可.
解答 解:(1)购买x件(10<x<60)时,y=140-(x-10)=150-x.
故y关于x的函数关系式是y=150-x.
(2)设第一批购买x件,则第二批购买(100-x)件.
①当30<x≤40时,则60≤100-x<100,则x(150-x)+80(100-x)=9200,
解得x1=30(舍去),x2=40;
②当40<x<60时,则40<100-x<60,
则x(150-x)+(100-x)[150-(100-x)]=9200,
解得x=30或x=70,但40<x<60,所以无解;
答:第一批购买数量为40件.
点评 考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{36}=±6$ | B. | $4\sqrt{2}÷2\sqrt{2}$=$2\sqrt{2}$ | C. | $8\sqrt{3}-2\sqrt{6}$=6 | D. | $\sqrt{a}•\sqrt{b}=\sqrt{ab}$(a≥0,b≥0) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{{\begin{array}{l}{2x-2y=18}\\{5x+4y=18}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{2x+2y=18}\\{5x-4y=18}\end{array}}\right.$ | ||
| C. | $\left\{{\begin{array}{l}{2x+2y=18}\\{5x=4y-18}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{2x+2y=18}\\{5x+4y=18}\end{array}}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com