【题目】正方形在平面直角坐标系中,其中三个顶点的坐标分别为,,,则第四个顶点的坐标为( )
A. B. C. D.
科目:初中数学 来源: 题型:
【题目】对于有理数a,b,定义一种新运算“⊙”,规定a⊙b=|a+b|+|a﹣b|.
(1)计算2⊙(﹣3)的值;
(2)当a,b在数轴上的位置如图所示时,化简a⊙b;
(3)已知(a⊙a)⊙a=8+a,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线BD平分∠ABC,过点A作AE∥BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.
(1)求证:四边形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节期间,七(1)班的李平、王丽等同学随家长一同到某公园游玩,下面是购买门票时,李平与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
⑴李平他们一共去了几个成人,几个学生?
⑵请你帮助算一算,用哪种方式购票更省钱?说明理由.
⑶购完票后,李平发现七⑵班的张明等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(初步探究)
(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.
(解决问题)
(2)如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.
(拓展应用)
(3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是 .
(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在和中给出4个论断:①;②;③;④,;现将4个论断分别粘贴在四个学生的后背上,进行如下游戏:其中三个学生站在讲台的左边,另一个学生站在讲台的右边,要求以三个学生后背上的部分论断作为题设,另一个学生后背上的论断作为结论,使之成为一个真命题或题目,这个游戏可进行几轮?并对其中的一种情况进行证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张长方形纸片分別沿着EP,FP对折,使点B落在点B,点C落在点C′.若点P,B′,C′不在一条直线上,且两条折痕的夹角∠EPF=85°,则∠B′PC′=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像交x轴、y轴于A、B两点
(1)直接写出A、B两点的坐标:____________;______________。
(2)P为线段AB上一点,PQ//y轴交x轴于C,交双曲线于Q且四边形OBPQ为平行四边形,△OCQ的面积为3
① 求k的值和P点坐标;
② 将△OBP绕点O逆时针旋转一周,在整个旋转过程中,P点能否落在双曲线上?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,其中﹣2<h<﹣1,﹣1<xB<0,下列结论①abc<0;②(4a﹣b)(2a+b)<0;③4a﹣c<0;④若OC=OB,则(a+1)(c+1)>0,正确的为( )
A. ①②③④ B. ①②④ C. ①③④ D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com