精英家教网 > 初中数学 > 题目详情

【题目】某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:ABCD,并绘制出如下不完整的统计图.

1)求被抽取的学生成绩在C组的有多少人;

2)所抽取学生成绩的中位数落在哪个组内;

3)若该学校有名学生,估计这次竞赛成绩在A组的学生有多少人.

【答案】124人;(2C组;(3150人.

【解析】

1)根据扇形统计图的B组所占比例,条形统计图得B在人数,用总人数减去ABD人数,可得C组人数;

2)根据总人数多少,结合中位数的概念确定即可;

3)根据样本中A组所占比例,用总人数乘以比例,即可得到答案.

1)由图可知:B组人数为12B组所占的百分比为20%

∴本次抽取的总人数为:(人),

∴抽取的学生成绩在C组的人数为:(人);

(2)∵总人数为60人,

∴中位数为第30,31个人成绩的平均数,

,且

∴中位数落在C组;

(3)本次调查中竞赛成绩在A组的学生的频率为:

故该学校有名学生中竞赛成绩在A组的学生人数有:(人).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,点E□ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF=BE,线段EF与边CD相交于点G

1)求证:DF//AC

2)如果AB=BEDG=CG联结DECF,求证:四边形DECF是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1=x+ax轴、y轴分别交于点DC两点和反比例函数交于AB两点,且点A的坐标是(13),点B的坐标是(3m)

1)求akm的值;

2)求CD两点的坐标,并求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】净扬水净化有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的小型水净化产品,已于当年投入生产并进行销售.已知生产这种小型水净化产品的成本为4/件,在销售过程中发现:每年的年销售量(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种水净化产品的年利润为z(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)

1)请求出y(万件)与x(元/件)之间的函数关系式;

2)求出第一年这种水净化产品的年利润z(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值;

3)假设公司的这种水净化产品第一年恰好按年利润z(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种水净化产品每件的销售价格x(元)定在8元以上(),当第二年的年利润不低于103万元时,请结合年利润z(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,平分平分相交于点,且,则__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴相交于两点,与轴相交于点,直线是抛物线的对称轴,在直线右侧的抛物线上有一动点,连接

1)求抛物线的函数表达式;

2)若点轴的下方,当的面积是时,求的面积;

3)在(2)的条件下,点轴上一点,点是抛物线上一动点,是否存在点,使得以点为顶点,以为一边的四边形是平行四边形,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元;若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍;已知乙车每趟运费比甲车少200元.

探究:

1)分别求出甲、乙两车每趟的运费;

2)若单独租用甲车运完此堆垃圾,需运多少趟;

发现:若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中均为正整数.

1)当时,______;当时,______

2)求yx之间满足的函数关系式.

决策:在“发现”的条件下,设总运费为w(元).

1)求wx之间满足的函数关系式,当x取何值时,w取得最小值;

2)当时,甲车每趟的运费打7折,乙车每趟的运费打9折,当x取何值时,w取得最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随州市新水一桥(如图1)设计灵感来源于市花﹣﹣兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.

(1)求最短的斜拉索DE的长;

(2)求最长的斜拉索AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.

(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:

小莉: 小刚:

根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:

小莉:x表示 ,y表示

小刚:x表示 ,y表示

(2)求甲、乙两工程队分别出新改造步行道多少米.

查看答案和解析>>

同步练习册答案