精英家教网 > 初中数学 > 题目详情

【题目】如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD . 若B(1,0),则点C的坐标为(  )
A.(1,2)
B.(1,1)
C.(- ,-
D.(2,1)

【答案】B
【解析】解答:∵∠OAB=∠OCD=90°,AO=AB , CO=CD , 等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0), ∴BO=1,则AO=AB=
∴A( ),
∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,
∴点C的坐标为(1,1).
故选:B.
分析:先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似求得答案.若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k , △ABC上一点的坐标是(x , y),则在△A′B′C′中,它的对应点的坐标是(kx , ky)或(-kx , ky).
【考点精析】本题主要考查了位似变换的相关知识点,需要掌握它们具有相似图形的性质外还有图形的位置关系(每组对应点所在的直线都经过同一个点—位似中心)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.

(1)用含m的代数式表示BE的长.
(2)当m= 时,判断点D是否落在抛物线上,并说明理由.
(3)若AG∥y轴,交OB于点F,交BD于点G.
①若△DOE与△BGF的面积相等,求m的值.
②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是两根木杆及其影子的图形.

(1)哪个图形反应了阳光下的情形?哪个图反映了路灯下的情形?
(2)请你画出图中表示小树影长的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列一元一次方程:

(1)0.5x﹣0.7=6.5﹣1.3x (2)1﹣2(2x+3)=﹣3(2x+1)

(3)5(x+8)=6(2x﹣7)+5; (4)5﹣=x

(5)=1 (6)=﹣1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABCAB=ACM为底边BC上任意一点,过点M分别作ABAC的平行线交ACP,交ABQ.

探究:(1)线段QMPMAB之间有什么关系?并说明你的理由.

(2)当M位于BC的什么位置时, 四边形AQMP是菱形?并说明你的理由.

(3)当ABC满足什么条件菱形AQMP是正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016个正整数1、2、3、4、……、2016按如图方式排列成一个表,用一方框按如图所示的方式任意框住9个数.(方框只能平移)

(1)若框住的9个数中,正中间的一个数为39,则:这九个数的和为__________.

(2)方框能否框住这样的9个数,它们的和等于2016?若能,请写出这9个数;若不能,请说明理由。

(3)若任意框住9个数的和记为S,则:S的最大值与最小值之差等于__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,四边形ABCD中,ABCDAB=2CDEAB的中点,AC为对角线,AC⊥BC.

(1)求证:四边形AECD是菱形.

(2)若∠DAE=60°,AE=2,求菱形AECD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=15AC=13BC边上的高AD=12,则BC的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中:

3x=﹣4系数化为1x=﹣

52x移项得x52

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括号得4x23x91

其中正确的个数有(  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

同步练习册答案