【题目】已知抛物线C1:y=ax2+bx﹣ (a≠0)经过点A(1,0)和B(﹣3,0).
(1)求抛物线C1的解析式,并写出其顶点C的坐标.
(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2 , 此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的上方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标.
(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.
【答案】
(1)解:∵抛物线C1:y=ax2+bx﹣ (a≠0)经过点A(1,0)和B(﹣3,0),
∴ 解得 ,
∴抛物线C1的解析式为y= x2+x﹣ ,
∵y= x2+x﹣ = (x+1)2﹣2,
∴顶点C的坐标为(﹣1,﹣2);
(2)解:如图1,作CH⊥x轴于H,
∵A(1,0),C(﹣1,﹣2),
∴AH=CH=2,
∴∠CAB=∠ACH=45°,
∴直线AC的解析式为y=x﹣1,
∵△DEF是以EF为底的等腰直角三角形,
∴∠DEF=45°,
∴∠DEF=∠ACH,
∴EF∥y轴,
∵DE=AC=2 ,
∴EF=4,
设F(m, m2+m﹣ ),则E(m,m﹣1),
∴(﹣ m2+m﹣ )﹣(m﹣1)=4,
解得m=﹣3(舍)或m=3,
∴F(3,6);
(3)解:①tan∠ENM的值为定值,不发生变化;
如图2中,作EG⊥AC,交BF于G,
∵DF⊥AC,BC⊥AC,
∴DF∥BC,
∵DF=BC=AC,
∴四边形DFBC是平行四边形,
∵∠CDF=90°,
∴四边形DFBC是矩形,
∴EG=BC=AC=2 ,
∵EN⊥EM,
∴∠MEN=90°,
∵∠CEG=90°,
∴∠CEM=∠NEG,
∴△ENG∽△EMC,
∴ = ,
∵F(3,6),EF=4,
∴E(3,2),
∵C(﹣1,﹣2),
∴EC=4 ,
∴ = =2,
∴tan∠ENM= =2;
∵tan∠ENM的值为定值,不发生变化;
②如图3﹣1中,
∵直角三角形EMN中,PE= MN,直角三角形BMN中,PB= MN,
∴PE=PB,
∴点P在EB的垂直平分线上,
∴点P经过的路径是线段PP′,如图3﹣2,
当点M与B重合时,
∵△EGN∽△ECB,
∴ = ,
∵EC=4 ,EG=BC=2 ,
∴EB=2 ,
∴ = ,
∴EN= ,
∵P1P2是△BEN的中位线,
∴P1P2= EN= ;
∴点M到达点C时,点P经过的路线长为 .
【解析】(1)用待定系数法即可求得解析式,把解析式化为顶点式即可求得顶点坐标;(2)根据A、C点的坐标求得直线AC的解析式为y=x﹣1,根据题意的EF=4,求得EF∥y轴,设F(m, m2+m﹣ ),则E(m,m﹣1),从而得出(﹣ m2+m﹣ )﹣(m﹣1)=4,解方程即可求得F的坐标;(3)先求得四边形DFBC是平行矩形,作EG⊥AC,交BF于G,然后判断出△ENG∽△EMC,根据相似三角形的性质对应边成比例即可求得tan∠ENM的值,②首先证明点P在EB的垂直平分线上,推出点P经过的路径是线段PP,当点M与B重合时,根据勾股定理和三角形相似求得EN,然后根据三角形中位线定理即可求得。
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发以每秒2cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=____,△APE的面积等于6.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空完成推理过程:
如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证AD∥BE.
证明:∵AB∥CD(已知)
∴∠4=∠BAE( )
∵∠3=∠4(已知)
∴∠3=∠ (等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( )
即∠BAF=∠CAD
∴∠3=∠ (等量代换)
∴AD∥BE( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40.
(1)求一次函数y=kx+b的表达式,并确定自变量x的取值范围.
(2)若该商场获得利润为w元,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,纸上有5个边长为1的小正方形组成的纸片.可以用下面的方法把它剪拼成一个正方形.
(1)拼成的正方形的面积是多少,边长是多少.
(2)你能在3×3的正方形方格图3中,连接四个点组成面积为5的正方形吗?
(3)如图4,你能把这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,请画出示意图,并写出边长为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:)如下:
,,,,,,
问:(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为(包括),超过部分每千米1.2元,问小李这天上午共得车费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com