【题目】如图,在△ABC中,AB=8,∠CBA=30°,以AB为直径作半圆O,半圆O恰好经过点C,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.
(1)求证:CE=CF
(2)填空:①若DF与半圆O相交于点P,则当点D与点O重合时,的长为
②在点D的运动过程中,当EF与半圆O相切时,EF的长为 .
【答案】(1)见解析;(2)①;②4.
【解析】
(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF;
(2)①根据已知条件得到DE⊥AC,推出DF⊥BC,得到∠FDB=60°,根据弧长的公式即可得到结论;
②连接OC,CD,推出△AOC是等边三角形,根据切线的性质得到∠ACE=∠B=30°,得到∠OCD=30°,根据三角函数的定义得到CD=sin60°AC=2,于是得到结论.
(1)连接CD,如图所示,
∵点E与点D关于AC对称,
∴CE=CD,
∴∠E=∠CDE,
∵DF⊥DE,
∴∠EDF=90°,
∴∠E+∠F=90°,∠CDE+∠CDF=90°,
∴∠F=∠CDF,
∴CD=CF,
∴CE=CD=CF;
(2)①∵点E与点D关于AC对称,
∴DE⊥AC,
∵∠ACB=∠EDF=90°,
∴DF⊥BC,
∴∠FDB=60°,
当点D与点O重合时,的长==,
故答案为:;
②连接OC,CD,
∵∠CBA=30°,
∴∠AOC=60°,
∵OC=OA,
∴△AOC是等边三角形,
∵EF与半圆O相切,
∴∠ACE=∠B=30°,
∴∠ACD=30°,
∴∠ADC=90°,
∴∠OCD=30°,
∴CD=sin60°AC=2,
∵CE=CD=CF,
∴EF=2CD=4.
故答案为:4.
科目:初中数学 来源: 题型:
【题目】我国的《洛书》中记载着世界上最古老幻方:将1-9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中字母m所能表示的所有数中最大的数是( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD=x,△BDE的面积为S.
(1)当α=30°时,求x的值.
(2)求S与x的函数关系式,并写出x的取值范围;
(3)以点E为圆心,BE为半径作⊙E,当S=时,判断⊙E与A′C的位置关系,并求相应的tanα值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列各式规律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;…;根据上面等式的规律:
(1)写出第6个和第n个等式;
(2)证明你写的第n个等式的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直角三角形纸片的两直角边AC与BC的比为3:4,首先将△ABC如图1所示折叠,使点C落在AB上,折痕为BD,然后将△ABD如图2所示折叠,使点B与点D重合,折痕为EF,则sin∠DEA的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知圆锥的高为,母线为,且,圆锥的侧面展开图为如图所示的扇形.将扇形沿折叠,使点恰好落在上的点,则弧长与圆锥的底面周长的比值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金2800元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金4600元.
(1)求甲、乙型号口罩每箱的进价为多少元?
(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预汁用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;
(3)若销售一箱甲型口罩,利润率为40%,乙型口罩的售价为每箱1280元.为了促销,公司决定每售出一箱乙型口罩,返还顾客现金元,而甲型口罩售价不变,要使(2)中所有方案获利相同,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直x=1线,下列结论中:①abc>0;②若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;③若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2<x1<x2<4;④(a+c)2>b2;一定正确的是______(填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为做好新型肺炎疫情防控,某社区开展新型肺炎疫情排查与宣传教育志愿服务活动,组织社区20名志愿者随机平均分配在4个院落门甲、乙、丙、丁处值守,并对进出人员进行测温度、劝导佩戴口罩、正确投放生活垃圾等服务.
(1)志愿者小明被分配到甲处服务是( )事件;
A.不可能事件 B.可能事件 C.必然事件 D.无法确定
(2)请用列表或树状图的方法,求出志愿者小明和小红被随机分配到同一处服务的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com