精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠ABC=90°,∠BAC30°,将ABC绕点A顺时针旋转一定的角度得到AED,点BC的对应点分别是ED.

(1)如图1,当点E恰好在AC上时,求∠CDE的度数;

(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.

【答案】115°;(2)证明见解析.

【解析】

1)如图1,利用旋转的性质得CADA,∠CAD=∠BAC30°,∠DEA=∠ABC90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;

2)如图2,利用直角三角形斜边上的中线性质得到BFAC,利用含30度的直角三角形三边的关系得到BCAC,则BFBC,再根据旋转的性质得到∠BAE=∠CAD60°ABAEACAD DEBC,从而得到DEBFACDBAE为等边三角形,接着由AFD≌△CBA得到DFBA,然后根据平行四边形的判定方法得到结论.

解:(1)如图1,∵△ABC绕点A顺时针旋转α得到AED,点E恰好在AC上,

CACD,∠CAD=∠BAC30°,∠DEA=∠ABC90°

CADA

∴∠ACD=∠ADC180°30°)=75°,∠ADE=90°-30°=60°

∴∠CDE75°60°15°

2)证明:如图2

∵点F是边AC中点,

BFAC

∵∠BAC30°

BCAC

BFBC

∵△ABC绕点A顺时针旋转60°得到AED

∴∠BAE=∠CAD60°ABAEACADDEBC

DEBFACDBAE为等边三角形,

BEAB

∵点FACD的边AC的中点,

DFAC

易证得AFD≌△CBA

DFBA

DFBE

BFDE

∴四边形BEDF是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数为常数)的图象经过点.

1)求满足的关系式;

2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;

3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.

(1)求A种,B种树木每棵各多少元?

(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数的图象与一次函数的图象交于点、点.

1)求一次函数和反比例函数的解析式;

2)求的面积;

3)直接写出一次函数值大于反比例函数值的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图像交坐标轴于A-10),B40),C0-4)三点,点P是直线BC下方抛物线上一动点.

1)求这个二次函数的解析式;

2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;

3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为宣传66日世界海洋日,某校九年级举行了主题为珍惜海洋资源,保护海洋生物多样性的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:

1)本次调查一共随机抽取了   个参赛学生的成绩;

2)表1   

3)所抽取的参赛学生的成绩的中位数落在的组别   

4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有   人.

1 知识竞赛成绩分组统计表

组别

分数/

频数

A

a

B

10

C

14

D

18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,连接BE交对角线AC于点F,则∠EFC_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,我们将相同的两块含30°角的直角三角板RtDEFRtABC叠合,使DEAB上,DE过点C,已知ACDE6

1)将图1中的△DEF绕点D逆时针旋转(DFAB不重合),使边DFDE分别交ACBC于点PQ,如图2

①求证:△CQD∽△APD;②连接PQ,设APx,求面积SPCQ关于x的函数关系式;

2)将图1中的△DEF向左平移(点AD不重合),使边FDFE分别交ACBC于点MNAMt,如图3

①判断△BEN是什么三角形?并用含t的代数式表示边BEBN;②连接MN,求面积SMCN关于t的函数关系式;

3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得SPCQ等于平移所得SMCN的最大值?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,分别是两边的中点,如果上的所有点都在△ABC的内部或边上,则称△ABC的中内弧.例如,下图中△ABC的一条中内弧.

1)如图,在Rt△ABC中,分别是的中点.画出△ABC的最长的中内弧,并直接写出此时的长;

2)在平面直角坐标系中,已知点,在△ABC中,分别是的中点.

①若,求△ABC的中内弧所在圆的圆心的纵坐标的取值范围;

②若在△ABC中存在一条中内弧,使得所在圆的圆心P△ABC的内部或边上,直接写出t的取值范围.

查看答案和解析>>

同步练习册答案