【题目】△DCE和△ABC是一大一小两块等腰三角尺,∠DCE=∠ACB=90°,AC=BC,EC=DC.
(1)如图1所示,若∠DBE=28°,试求∠AEB的大小;
(2)若将△DCE绕C点顺时针旋转到图2所示,∠DBE=n°,试求∠AEB的大小.(用含n的式子表示)
【答案】(1)∠AEB=118°;(2)∠AEB=90°+n°.
【解析】
(1)依据DCE=∠ACB=90°,AC=BC,EC=DC,即可判定△BCD≌△ACE,再根据三角形外角性质,即可得到∠AEB的大小;
(2)先根据∠DCE=∠ACB=90°,AC=BC,EC=DC,判定△BCD≌△ACE,即可得到∠DBC=∠EAC,再根据三角形内角和定理,即可得到∠AEB的大小.
(1)如图1,∵∠DCE=∠ACB=90°,AC=BC,EC=DC,
∴△BCD≌△ACE,
∴∠DBC=∠EAC=28°,
∵∠AEB是△ACE的外角,
∴∠AEB=∠ACE+∠EAC=90°+28°=118°;
(2)如图2,∵∠DCE=∠ACB=90°,AC=BC,EC=DC,
∴∠BCD=∠ACE,
∴△BCD≌△ACE,
∴∠DBC=∠EAC,
∵∠DBE=∠DBC+∠CBE=n°,
∴∠CAE+∠CBE=n°,
又∵∠ABC+∠BAC=90°,
∴∠ABE+∠BAE=90°﹣n°,
∴△AEB中,∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣(90°﹣n°)=90°+n°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).
(1)当AE=8时,求EF的长;
(2)设AE=x,矩形EFPQ的面积为y.
①求y与x的函数关系式;
②当x为何值时,y有最大值,最大值是多少?
(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,
(1)求证:AD2=AEAB;
(2)∠ADC与∠BED是否相等?请说明理由;
(3)若CD=2,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,点,点同时从点出发,速度均2cm/s,点沿向点运动,点沿向点运动,则△的面积与运动时间之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC,∠A、∠B、∠C之和为多少?为什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x轴,交y=的图象于点A,PD⊥y轴,交y=的图象于点B,当点P在y=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;其中一定正确的是( )
A. ①②③ B. ① C. ②③ D. ①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )
A. 20米 B. 米 C. 米 D. 米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com