【题目】如图1,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连结DE交AC于点F,连结BF.
(1)求证:FB=FD;
(2)如图2,连结CD,点H在线段BE上(不含端点),且BH=CE,连结AH交BF于点N.
①判断AH与BF的位置关系,并证明你的结论;
②连接CN.若AB=2,请直接写出线段CN长度的最小值.
【答案】(1)见解析;(2)①AH⊥BF,见解析;②.
【解析】
(1)证明△FAD≌△FAB(SAS)即可解决问题.
(2)①首先证明四边形ABCD是正方形,再证明∠BAH=∠CBF即可解决问题.
②如图3中,取AB的中点O,连接ON,OC.理由三角形的三边关系解决问题即可.
(1)证明:如图1中,
∵BA=BC,∠ABC=90°,
∴∠BAC=∠ACB=45°,
∵线段AB绕点A逆时针旋转90°得到线段AD,
∴∠BAD=90°,BA=AD,
∴∠FAD=∠FAB=45°,
∵AF=AF,
∴△FAD≌△FAB(SAS),
∴BF=DF.
(2)①解:结论:AH⊥BF.
理由:如图2中,连接CD.
∵∠ABC+∠BAD=180°,
∴AD∥BC,
∵AD=AB=BC,
∴四边形ABCD是平行四边形,
∵∠ABC=90°,
∴四边形ABCD是矩形,
∵AB=BC,
∴四边形ABCD是正方形,
∵BA=CD,∠ABH=∠DCE,BH=CE,
∴△ABH≌△DCE(SAS),
∴∠BAH=∠CDE,
∵∠FCD=∠FCB=45°,CF=CF,CD=CB,
∴△CFD≌△CFB(SAS),
∴∠CDF=∠CBF,
∴∠BAH=∠CBF,
∵∠CBF+∠ABF=90°,
∴∠BAH+∠ABF=90°,
∴∠ANB=90°,
∴AH⊥BF.
②如图3中,取AB的中点O,连接ON,OC.
∵∠ANB=90°,AO=OB,
∴ON=AB=1,
在Rt△OBC中,OC=,
∵CN≥OC-ON,
∴CN≥-1,
∴CN的最小值为-1.
科目:初中数学 来源: 题型:
【题目】如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为,顶点距水面,小孔顶点距水面.当水位上涨刚好淹没小孔时,大孔的水面宽度为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=6,F为AM的中点,求DN的长;
(3)若AB=12,DE=1,BM=5,求DN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格中的每个小方格都是边长为1的正方形,我们把以格点间的连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;
(2)把△ABC绕点C按顺时针旋转90°后得△A2B2C2,画出△A2B2C2的图形并写出B2的坐标;
(3)把△ABC以点A为位似中心放大,使放大前后对应边的比为1∶2,画出△AB3C3的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )
A. 2.5B. 3C. 3.5D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是 ;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚获胜,否则小明获胜.
(1)利用画树状图或列表法表示游戏所有可能出现的结果.
(2)这个游戏对双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=,把x=,代入已知方程,
得()2 +﹣1=0.
化简,得y2+2y﹣4=0,
故所求方程为y2+2y﹣4=0
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+2x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为 ;
(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com