精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,DEF分别为BCACAB的中点,ADBECF相交于点OAB6AC8BC10,则DE_____OA_____OF_____,∠DEF=∠_____

【答案】3 ABC

【解析】

易得DE是△ABC的中位线,那么DE等于AB的一半;可证得△ABC是直角三角形,那么AD等于BC的一半;AO等于AD的三分之二;利用勾股定理可得求得FC的长,则OF等于CF的三分之一;各对应边成比例,那么△ABC∽△DEF,那么∠DEF=ABC.

解:DEF分别为BCACAB的中点,

DEABC的中位线,

DEAB3

AB6AC8BC10

∴∠A90°

ADBC5

同理DEAB

∴△DOE∽△AOB

,

AOAD

CF

同理可得OFCF,

OFCF

∵△ABCDEF各对应边之比均为12

∴△ABC∽△DEF

∴∠DEFABC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一道作业题:

有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在ABAC上.问加工成的正方形零件的边长是多少mm

小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.

1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.

2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是等边ABC内的任一点,连接OA,OB,OC.

(1)如图1,已知AOB=150°,BOC=120°,将BOC绕点C按顺时针方向旋转60°得ADC.

DAO的度数是

②用等式表示线段OA,OB,OC之间的数量关系,并证明;

(2)设AOB=α,BOC=β.

①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;

②若等边ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一个例题:

有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?

这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2

我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:

1)若AB1m,求此时窗户的透光面积?

2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD是菱形,点E在边CD上,点FBC的延长线上,CFDEAE的延长线与DF相交于点G

1)求证:∠CDF=∠DAE

2)如果DECE,求证:AE3EG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某小学门口有一直线马路,交警在门口设有一条宽度为4米的斑马线,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E,D,C,B四点在平行于斑马线的同一直线上)(参考数据:tan15°=2-≈1.732,≈1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象过点(1)、(24)、(﹣1)与x轴分别交于B(左)、C两点,与y轴交于点A

1)求二次函数的解析式;

2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2﹣2x﹣3x轴交于A,B两点(AB的左侧),顶点为C.

(1)A,B两点的坐标;

(2)若将该抛物线向上平移t个单位后,它与x轴恰好只有一个交点,求t的值.

查看答案和解析>>

同步练习册答案