【题目】如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是 .
【答案】64
【解析】试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.
试题解析:如图,,
过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,
根据题意得,△1∽△2∽△3,
∵△1:△2=1:4,△1:△3=1:25,
∴它们的边长比为1:2:5,
又∵四边形BDMG与四边形CEMH为平行四边形,
∴DM=BG,EM=CH,
设DM为x,
则BC=BG+GH+CH=x+5x+2x=8x,
∴BC:DM=8:1,
∴S△ABC:S△FDM=64:1,
∴S△ABC=1×64=64,
故答案为:64.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中∠ABC=90°,,AB=4 cm, BC=3cm,动点P以3cm/s的速度由A向C运动,动点Q同时以1cm/s的速度由B向CB的延长线方向运动,连PQ交AB于D,则当运动时间为____s时,△ADP是以AP为腰的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG,当点E在线段BC上时,如图1,易证:AB=CG+CE.
(1)当点E在线段BC的延长线上时(如图2),猜想AB,CG,CE之间的关系并证明;
(2)当点E在线段CB的延长线上时(如图3),直接写出AB,CG,CE之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人做掷一个均匀小立方体的游戏,立方体的每个面上分别标有数字1,2,3,4,5,6,任意掷出小立方体后,若朝上的数字小于3,则甲获胜;若朝上的数字大于3 ,则乙获胜.你认为这个游戏对甲乙双方公平吗?为什么?你能不能就上面的小立方体设计一个较为公平的游戏?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),的顶点、、分别与正方形的顶点、、重合.
(1)若正方形的边长为,用含的代数式表示:正方形的周长等于_______,的面积等于_______.
(2)如图2,将绕点顺时针旋转,边和正方形的边交于点.连结,设旋转角.
①试说明;
②若有一个内角等于,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,y轴上有一点A(0,1),点B是x轴上一点,∠ABO=60°,抛物线y=﹣x2++3与x轴交于C、D两点(点C在点D的左侧).
(1)将点C向右平移个单位得到点E,过点E作直线l⊥x轴,点P为y轴上一动点,过点P作PQ⊥y轴交直线l于点Q,点K为抛物线上第一象限内的一个动点,当△ABK面积最大时,求KQ+QP+PE的最小值,及此时点P的坐标;
(2)在(1)的条件下,将线段PE绕点P逆时针旋转90°后得线段PE′,问:在第一象限内是否存在点S,使得△SPE'是有一个角为60°,且以线段PE′为斜边的直角三角形,若存在请直接写出所有满足条件的点S,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在中,是高,是角平分线,当,,则____;
(2)若和的度数分别用字母和来表示(),你能找到与和之间的关系吗? ______.(请直接写出你发现的结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.
(1)飞行的水平距离是多少时,球最高?
(2)球从飞出到落地的水平距离是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com