【题目】有这样一个问题:探究方程x3﹣x﹣2=0的实数根的个数.
小芳想起了曾经解决的一个问题:通过函数图象探究方程x2+3x﹣1=0的实数根的个数,她想到了如下的几个方法:
方法1:方程x2+3x﹣1=0的根可以看作是抛物线y=x2+3x﹣1与直线y=0(即x轴)交点的横坐标;这两个图象的交点个数即是方程x2+3x﹣1=0的实数根的个数.
方法2:将方程变形成x2=﹣3x+1,那么方程x2+3x﹣1=0的根也可以看作是抛物线y=x2与直线y=﹣3x+1交点的横坐标;这两个图象的交点个数即是方程x2+3x﹣1=0的实数根的个数.
方法3:由于x≠0,将方程变形成,那么方程x2+3x﹣1=0的根也可以看作是直线y=x+3与双曲线交点的横坐标;这两个图象的交点个数即是方程x2+3x﹣1=0的实数根的个数.
她类比上述方法,借助函数图象的交点个数对方程x3﹣x﹣2=0的实数根的个数进行了探究.
下面是小芳的探究过程,请补充完成:
(1)x=0 方程x3﹣x﹣2=0的根;(填”是”或”不是”)
(2)方程x3﹣x﹣2=0的根可以看作是函数 与函数 的图象交点的横坐标;
(3)在同一坐标系中画出两个函数的图象;
(4)观察图象可得,方程x3﹣x﹣2=0的实数根的个数是 个.
【答案】(1)不是;(2)y=x2﹣1, ;(3)见解析;(4)1
【解析】
(1)将x=0代入x3﹣x﹣2中,可知x=0不是方程x3﹣x﹣2=0的根;
(2)将原方程变形为(x≠0),由此即可得出结论;
(3)画出函数y=x2﹣1与函数的图象;
(4)根据两函数图象交点的个数,找出方程解得个数.
解:(1)当x=0时,x3﹣x﹣2=﹣2,
∴x=0不是方程x3﹣x﹣2=0的根.
故答案为:不是.
(2)∵方程x3﹣x﹣2=0可变形为(x≠0),
∴方程x3﹣x﹣2=0的根可以看作是函数y=x2﹣1与函数的图象交点的横坐标.
故答案为:y=x2﹣1;.
(3)画出两函数图象,如图所示.
(4)观察图象可知,函数y=x2﹣1与函数的图象只有一个交点,
∴方程x3﹣x﹣2=0的实数根的个数是1个.
故答案为:1.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.
(1)当t=秒时,点Q的坐标是 ;
(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;
(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生每月零用钱情况,从七、八、九年级1200名学生中随机抽取部分学生,对他们今年4月份的零用钱支出情况进行调查统计并绘制成如下统计图表:
组别 | 零用钱支出x(单位:元) | 频数(人数) | 频率 |
节俭型 | x<10 | 2 | 0.05 |
10≤x<20 | 4 | 0.10 | |
富足型 | 20≤x<30 | 12 | |
30≤x<40 | m | ||
奢侈型 | 40≤x<50 | n | |
x≥50 | 2 |
请根据图表中所给的信息,解答下列问题:
(1)在这次调查中共随机抽取了 名学生,图表中的m= ,n= ;
(2)请估计该校今年4月份零用钱支出在“30≤x<40范围的学生人数;
(3)在抽样的“节俭型”学生中,有2位男生和4位女生,校团委计划从中随机抽取两人参与“映山红”的公益活动,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;
(3)求PAC为直角三角形时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出如下问题:
已知:如图1△ABC,尺规作图:求作∠APC=∠ABC.
甲、乙两位同学的主要作法如下:
甲同学的主要作法,如图甲:①作∠CAD=∠ACB,且点D与点B在AC的异侧;②在射线AD上截取AP=CB,连结CP.所以∠APC=∠ABC.
乙同学的主要作法,如图乙:①作线段BC的垂直平分线a;②作线段AB的垂直平分线b,与直线a交于点O;③以点O为圆心,OA为半径作⊙O;④在上取一点P(点P不与点A,B,C重合),连结AP,CP.所以∠ACP=∠ABC.
老师说:“两位同学的作法都是正确的.”
请你选择一位同学的作法,并说明这位同学作图的依据.
我选择的是_________的作法,这样作图的依据是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴是,且经过A(﹣4,0),C(0,2)两点,直线l:y=kx+t(k≠0)经过A,C.
(1)求抛物线和直线l的解析式;
(2)点P是直线AC上方的抛物线上一个动点,过点P作PD⊥x轴于点D,交AC于点E,过点P作PF⊥AC,垂足为F,当△PEF≌△AED时,求出点P的坐标;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,直接写出所有满足条件的Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“关联点”有_____;
(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是( )
A.①③④B.①②④C.①②③D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
数学课上老师布置一道作图题:
已知:直线l和l外一点P.
求作:过点P的直线m,使得m∥l.
小东的作法如下:
作法:如图2,
(1)在直线l上任取点A,连接PA;
(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;
(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;
(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.
老师说:“小东的作法是正确的.”
请回答:小东的作图依据是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com