精英家教网 > 初中数学 > 题目详情

【题目】如图,DABCBC边上一点,连接AD,作ABD的外接圆,将ADC沿直线AD折叠,点C的对应点E落在上.

(1)求证:AE=AB;

(2)若∠CAB=90°,cosADB=,BE=2,求BC的长.

【答案】(1)证明见解析;(2)BC=

【解析】分析: (1)由翻折的性质得出△ADE≌△ADC,根据全等三角形对应角相等,对应边相等得出∠AED=ACD,AE=AC,根据同弧所对的圆周角相等得出∠ABD=AED,根据等量代换得出∠ABD=ACD,根据等角对等边得出AB=AC,从而得出结论;

(2)如图,过点AAHBE于点H,根据等腰三角形的三线合一得出BH=EH=1,根据等腰三角形的性质及圆周角定理得出∠ABE=AEB=ADB,根据等角的同名三角函数值相等及余弦函数的定义得出BHAB = 13,从而得出AC=AB=3,在Rt三角形ABC中,利用勾股定理得出BC的长.

详解:

(1)解 :由题意得ADE≌△ADC,

∴∠AED=ACD,AE=AC

∵∠ABD=AED,

∴∠ABD=ACD

AB=AC

AE=AB

(2)解 :如图,过点AAHBE于点H

AB=AE,BE=2

BH=EH=1

∵∠ABE=AEB=ADB,cosADB=

cosABE=cosADB=

=

AC=AB=3

∵∠BAC=90°,AC=AB

BC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,若△APB绕点A逆时针旋转60后,得到△AP′C,则∠APC=( ).

A.150°B.120°C.100°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠C90°AC3BC4,将△ABC绕点C顺时针旋转a(0°a180°)得到△DCE,点A与点D对应,点B与点E对应,当点D落在△ABC的边上时,则BD的长_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.

(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?

(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数在第一象限内的图象经过菱形OABC的顶点A和C.若菱形OABC的面积为10,AOC=30°,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为_____(答案用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②

(1)根据以上操作和发现,求的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,AB1AD2,动点MN分别从顶点AB同时出发,且分别沿着ADBA运动,点N的速度是点M2倍,点N到达顶点A时,则两点同时停止运动,连接BMCN交于点P,过点P分别作ABAD的垂线,垂足分别为EF,则线段EF的最小值为(  )

A.B.1C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABCDEF进行探究活动.

操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DEAC或其延长线交于点K,线段BCDF相交于点G(如图23)

探究1:在图2中,求证:△ADK∽△BGD

探究2:在图2中,求证:KD平分∠AKG

探究3

①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.

②在以上操作过程中,若设AC=BC=8KG=x,△DKG的面积为y,请求出yx的函数关系式,并直接写出x的取值范围.

查看答案和解析>>

同步练习册答案