精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,在平行四边形ABCD中,点M,N分别在边ABDC上,作直线MN,分别交DABC的延长线于点EF,且AE=CF.

(1) 求证:AEM≌△CFN.

(2) 求证:四边形BNDM是平行四边形

【答案】1)见详解;(2)见详解

【解析】

1)根据四边形ABCD是平行四边形,证明∠E=F,∠EAM=FNC,结合AE=CF,问题得证;

(2)根据△AEM≌△CFN和据四边形ABCD是平行四边形,证明BM=DNBMDN,问题得证.

解:(1)证明:∵四边形ABCD是平行四边形,

ADBC,∠BAD=BCD

∴∠E=F,∠EAM=FNC

AE=CF

∴△AEM≌△CFN

(2)证明:∵△AEM≌△CFN

AM=CN

∵四边形ABCD是平行四边形,

ABCDAB=CD

BM=DN

∴四边形BNDM是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,抛物线x轴交于点A﹣10)和点B,与y轴相交于点C03),抛物线的对称轴为直线

1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;

2)如果直线y=kx+b经过CM两点,且与x轴交于点D,点C关于直线的对称点为N,试证明四边形CDAN是平行四边形;

3)点P在直线上,且以点P为圆心的圆经过AB两点,并且与直线CD相切,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】说理填空:如图,点EDC的中点,EC=EB,∠CDA=120°DF//BE,且DF平分∠CDA,若△BCE的周长为18cm,求DC的长.

解: 因为DF平分∠CDA,(已知)

所以∠FDC=_________.____________________

因为∠CDA=120°,(已知)所以∠FDC=______°.

因为DF//BE,(已知)

所以∠FDC=_________=60°.____________________________________

又因为EC=EB,(已知)

所以△BCE为等边三角形.________________________________________

因为△BCE的周长为18cm,(已知) 所以BE=EC=BC=6 cm.

因为点EDC的中点,(已知) 所以DC=2EC=12 cm .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市今年共有万名考生参加中考,为了了解这万名考生的数学成绩,从中抽取了名考生的数学成绩进行统计分析,以下说法正确的有( )

①这种调查采用了抽样调查的方式;②这种调查采用了全面调查的方式;是样本容量;④每名考生的数学成绩是个体

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸片沿着AE折叠后,点D恰好与BC边上的点F重合,已知AB6cmBC10cm,则EC的长度为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中, 为对角线 的交点,经过点和点作⊙,分别交 于点 .已知正方形边长为的半径为,则的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从我市至枣庄正在修筑的高速公路经过某村,需把本村部分农户搬迁至一个规划区域建房.若这批搬迁农户建房每户占地,则规划区域内绿地面积占规划区域总面积的;政府又鼓励本村不需要搬迁的农户到规划区域建房,这样又有户农户加入建房,若仍以每户占地计算,则这时绿地面积只占规划区域总面积的.问:

1)(列方程组解应用题)最初必须搬迁建房的农户有多少,政府的规划区域总面积是多少平方米?

2)若要求绿地面积不得少于规划区域总面积的,为了符合要求,需要退出部分农户,至少需要退出几户农户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程(或方程组)解应用题2019年是决胜全面建成小康社会、打好污染防治攻坚战的关键之年.为了解决垃圾回收最后一公里的难题,小黄狗智能垃圾分类回收环保公益项目通过大数据、人工智能和物联网等先进科技进驻小区、写字楼、学校、机关和社区等进行回收.某位小区居民装修房屋,在过去的一个月内投放纸类垃圾和塑料垃圾共82公斤,其中纸类垃圾的投放是塑料垃圾的8倍多10公斤,请问这位小区居民在过去的一个月内投放纸类垃圾和塑料垃圾分别是多少公斤?

查看答案和解析>>

同步练习册答案