【题目】如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.
(1)求抛物线的解析式;
(2)当m为何值时,;
(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.
【答案】(1)y=x2+4x-1;(2)∴m=,-2,或-3时S四边形OBDC=2SS△BPD
【解析】试题分析:(1)由x=0时带入y=x-1求出y的值求出B的坐标,当x=-3时,代入y=x-1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;
(2)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和2S△BPD建立方程求出其解即可.
(3)如图2,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论.
试题解析:
∵y=x-1,∴x=0时,y=-1,∴B(0,-1).
当x=-3时,y=-4,∴A(-3,-4).
∵y=x2+bx+c与直线y=x-1交于A、B两点,∴
∴∴抛物线的解析式为:y=x2+4x-1;
(2)∵P点横坐标是m(m<0),∴P(m,m2+4m-1),D(m,m-1)
如图1①,作BE⊥PC于E, ∴BE=-m.
CD=1-m,OB=1,OC=-m,CP=1-4m-m2,
∴PD=1-4m-m2-1+m=-3m-m2,
∴
解得:m1=0(舍去),m2=-2,m3=
如图1②,作BE⊥PC于E,
∴BE=-m.
PD=1-4m-m2+1-m=2-4m-m2,
解得:m=0(舍去)或m=-3,
∴m=,-2,或-3时S四边形OBDC=2S△BPD;
)如图2,当∠APD=90°时,设P(a,a2+4a-1),则D(a,a-1),
∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m2,
∴DP=1-4m-m2-1+m=-3m-m2.
在y=x-1中,当y=0时,x=1,
∴(1,0),
∴OF=1,∴CF=1-m.AF=4
∵PC⊥x轴,
∴∠PCF=90°,
∴∠PCF=∠APD,
∴CF∥AP,
∴△APD∽△FCD,
∴
解得:m=1舍去或m=-2,∴P(-2,-5)
如图3,当∠PAD=90°时,作AE⊥x轴于E,
∴∠AEF=90°.CE=-3-m,EF=4,AF=4
PD=1-m-(1-4m-m2)=3m+m2.
∵PC⊥x轴,∵PC⊥x轴,
∴∠DCF=90°,
∴∠DCF=∠AEF,
∴AE∥CD.
∴AD=(-3-m)
∵△PAD∽△FEA,
∴
∴m=-2或m=-3
∴P(-2,-5)或(-3,-4)与点A重合,舍去,
∴P(-2,-5).
科目:初中数学 来源: 题型:
【题目】如图,己知 AB∥CD,∠BAD 和∠BCD 的平分线交于点E,∠1=100°,∠BAD=m°,则∠AEC的度数为( )
A.m°
B.(40+ )°
C.(40﹣ )°
D.(50+ )°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1、A2、……、An、An+1是x轴上的点,且OA1=A1A2=A2A3=……=AnAn+1=1,分别过点A1、A2、……、An、An+1作x轴的垂线交直线y=2x于点B1、B2、……、Bn、Bn+1,连接A1B2、B1A2、A2B3、B2A3、……、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、……、Pn,△A1B1P1、△A2B2P2、……、△AnBnPn的面积依次为S1、S2、……、Sn,则Sn为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,D、E分别为△ABC的边AB、AC上点,BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.
(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)
(2)证明你写的命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC在直角坐标系内的位置如图所示,反比例函数 在第一象限内的图象与BC边交于点D(4,m),与直线AB:y= x+b交于点E(2,n).
(1)m= ,点B的纵坐标为 ;(用含n的代数式表示);
(2)若△BDE的面积为2,设直线AB与y轴交于点F,问:在射线FD上,是否存在异于点D的点P,使得以P、B、F为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,现有一动点M,从O点出发,沿x轴的正方向,以每秒2个单位的速度运动,设运动时间为t(s),问:是否存在这样的t,使得在直线AB上,有且只有一点N,满足∠MNC=45°?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com