精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+ca≠0)的对称轴为直线x=-1,且抛物线经过A10),C03)两点,与x轴交于点B

1)若直线y=mx+n经过BC两点,求直线BC和抛物线的解析式;

2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

【答案】1y=x+3y=-x2-2x+3;(2M的坐标为(-12);(3P的坐标为(-1-2)或(-14)或(-1)或(-1).

【解析】

1)先把点AC的坐标分别代入抛物线解析式得到abc的关系式,再根据抛物线的对称轴方程可得ab的关系,再联立得到方程组,解方程组,求出abc的值即可得到抛物线解析式;把BC两点的坐标代入直线y=mx+n,解方程组求出mn的值即可得到直线解析式;

2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3y的值,即可求出点M坐标;

3)设P-1t),又因为B-30),C03),所以可得BC2=18PB2=-1+32+t2=4+t2PC2=-12+t-32=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.

解:(1)依题意得:

解之得:

∴抛物线解析式为y=-x2-2x+3

∵对称轴为x=-1,且抛物线经过A10),

∴把B-30).C03)分别代入直线y=mx+n

解之得:

∴直线y=mx+n的解析式为y=x+3

2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.

x=-1代入直线y=x+3得,y=2

M-12),

即当点M到点A的距离与到点C的距离之和最小时M的坐标为(-12);

3)设P-1t),

又∵B-30),C03),

BC2=18PB2=-1+32+t2=4+t2PC2=-12+t-32=t2-6t+10

①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得:t=-2

②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得:t=4

③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得:t1=t2=

综上所述P的坐标为(-1-2)或(-14)或(-1或(-1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系上的点,定义如下:若上存在两个点,使得点在射线上,且,则称的依附点.

1)当的半径为1

①已知点,在点中,的依附点是______

②点在直线上,若的依附点,求点的横坐标的取值范围;

2的圆心在轴上,半径为1,直线轴、轴分别交于点,若线段上的所有点都是的依附点,请求出圆心的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点坐标是.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的直径,AB是⊙O的弦,ABCD,垂足为GOGOC=35AB=8.点E为圆上一点,∠ECD=15°,将 沿弦CE翻折,交CD于点F,图中阴影部分的面积=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线k0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣64),则△AOC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BC5EBC边上的一个动点,DFAE,垂足为点F,连结CF

1)若AEBC

①求证:ABE≌△DFA;②求四边形CDFE的周长;③求tanFCE的值;

2)探究:当BE为何值时,CDF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.

1)求甲、乙两车行驶的速度VV.

2)求m的值.

3)若甲车没有故障停车,求可以提前多长时间两车相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快智慧校园建设,某市准备为试点学校采购一批两种型号的一体机,经过市场调查发现,每套型一体机的价格比每套型一体机的价格多万元,且用万元恰好能购买型一体机和型一体机.

1)列二元一次方程组解决问题:求每套型和型一体机的价格各是多少万元?

2)由于需要,决定再次采购型和型一体机共套,此时每套型体机的价格比原来上涨,每套型一体机的价格不变.设再次采购型一体机套,那么该市至少还需要投入多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)

查看答案和解析>>

同步练习册答案