精英家教网 > 初中数学 > 题目详情

【题目】如图,CD是⊙O的直径,AB是⊙O的弦,ABCD,垂足为GOGOC=35AB=8.点E为圆上一点,∠ECD=15°,将 沿弦CE翻折,交CD于点F,图中阴影部分的面积=_________

【答案】

【解析】

连接AO,将阴影部分沿CE翻折,点F的对应点为M,连接OM,过点MMNCD于点N,根据题意可以利用勾股定理求得⊙O的半径;得出S阴影S弓形CBM,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题.

解:连接AO,将阴影部分沿CE翻折,点F的对应点为M,如图所示,
CD为⊙O的直径,ABCDAB8
AGAB4
OGOC35ABCD,垂足为G
∴设⊙O的半径为5k,则OG3k
∴(3k242=(5k2
解得,k1k1(舍去),
5k5
∴⊙O的半径是5

将阴影部分沿CE翻折,点F的对应点为M
∵∠ECD15°,由对称性可知,∠DCM30°S阴影S弓形CBM
连接OM,则∠MOD60°
∴∠MOC120°
过点MMNCD于点N
MNMOsin60°=
S阴影S扇形OMCSOMC
即图中阴影部分的面积是:
故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知二次函数(为常数,)的图象过点和点,函数图象最低点的纵坐标为.直线的解析式为

求二次函数的解析式;

直线沿轴向右平移,得直线与线段相交于点,与轴下方的抛物线相交于点,过点轴于点,把沿直线折叠,当点恰好落在抛物线上点(求直线的解析式;

的条件下,轴交于点,把绕点逆时针旋转得到P上的动点,当为等腰三角形时,求符合条件的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为ABCD四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:

1)求参加比赛的学生共有多少名?并补全图1的条形统计图.

2)在图2扇形统计图中,m的值为_____,表示“D等级”的扇形的圆心角为_____度;

3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以点为圆心,以为半径作优弧,交于点,交于点.在优弧上从点开始移动,到达点时停止,连接.

1)当时,判断与优弧的位置关系,并加以证明;

2)当时,求点在优弧上移动的路线长及线段的长.

3)连接,设的面积为,直接写出的取值范围.

备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形ABCD的顶点BCx轴的正半轴上,反比例函数在第一象限的图象经过顶点A(mm+3)和CD上的点E,且OB-CE=1。直线lO、E两点,则tanEOC的值为( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.

(1)求抛物线的解析式;

(2)在AC上方的抛物线上有一动点P.

①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;

②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+ca≠0)的对称轴为直线x=-1,且抛物线经过A10),C03)两点,与x轴交于点B

1)若直线y=mx+n经过BC两点,求直线BC和抛物线的解析式;

2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数的图象与函数的图象交于两点,连接并延长交函数的图象于点,连接,若的面积为12,则的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,二次函数ykx12+2的图象与一次函数ykxk+2的图象交于AB两点,点B在点A的右侧,直线AB分别与xy轴交于CD两点,其中k0

1)求AB两点的横坐标;

2)若△OAB是以OA为腰的等腰三角形,求k的值;

3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC2BEC,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案