精英家教网 > 初中数学 > 题目详情
11.【试题背景】
已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.
【探究1】
(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.
【探究2】
(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为$\frac{\sqrt{13}}{2}$或$\frac{\sqrt{37}}{2}$或.(直接写出结果即可)
【探究3】
如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.
【拓展】
(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.
猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.

分析 (1)证明△ABE≌△BCF,得出AE=BF,因此BE=3,AE=1,由勾股定理即可得出结果;
(2)过B作BE⊥l于点E,交k于点F则BE=1,BF=3,证出△AEB∽△BFC,当AB是较短的边时,AB=$\frac{1}{2}$BC,则AE=$\frac{1}{2}$BF=$\frac{3}{2}$,由勾股定理求出AB;当AB是长边时,同理可得:BC=$\frac{{\sqrt{37}}}{2}$;即可得出结果;
(3)连接AC,由菱形的性质和已知条件得出AC=AD,由HL证明Rt△AEC≌Rt△AFD,即可得出EC=DF;
(4)当2<DH<4时,点D在线段CM上,连接AM.由HL证明Rt△ABM≌Rt△ACM,得出∠BAM=∠CAM,因此AM⊥BC,由HL证明Rt△ABE≌Rt△ACD,得出∠BAE=∠CAD,因此∠EAM=∠DAM,得出AM⊥ED.即可得出结论.

解答 (1)解:∵l∥k,BE⊥l,
∴∠BFC=∠BEA=90°,
∴∠ABE+∠BAE=90°,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∴∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠BEA=∠CFB}&{\;}\\{∠BAE=∠CBF}&{\;}\\{AB=BC}&{\;}\end{array}\right.$,
∴△ABE≌△BCF(AAS),
∴AE=BF,
∵d1=d3=1,d2=2,
∴BE=3,AE=1,
在直角△ABE中,AB=$\sqrt{B{E^2}+A{E^2}}$=$\sqrt{{3^2}+{1^2}}$=$\sqrt{10}$,
即正方形的边长是$\sqrt{10}$;
(2)解:过B作BE⊥l于点E,交k于点F,
则BE=1,BF=3,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴∠ABE+∠FBC=90°,
又∵直角△ABE中,∠ABE+∠EAB=90°,
∴∠FBC=∠EAB,
∴△AEB∽△BFC,
当AB是较短的边时,如图(a),
AB=$\frac{1}{2}$BC,则AE=$\frac{1}{2}$BF=$\frac{3}{2}$,
在直角△ABE中,AB=$\sqrt{1+{{({\frac{3}{2}})}^2}}=\frac{{\sqrt{13}}}{2}$;
当AB是长边时,如图(b)
同理可得:BC=$\frac{{\sqrt{37}}}{2}$;
故答案为:$\frac{{\sqrt{13}}}{2}$或$\frac{{\sqrt{37}}}{2}$;
(3)证明:连接AC,如图2所示:
∵四边形ABCD是菱形,且∠ADC=60°,
∴AC=AD,
∵△AEF是等边三角形,
∴AE=AF,
∵AE⊥k,∠AFD=90°,
∴∠AEC=∠AFD=90°,
在Rt△AEC和Rt△AFD中,
$\left\{\begin{array}{l}{AC=AD}\\{AE=AF}\end{array}\right.$,
∴Rt△AEC≌Rt△AFD(HL),
∴EC=DF;
(4)解:当2<DH<4时,BC∥DE.理由如下:
如图3所示,当2<DH<4时,点D在线段CM上,连接AM,
则∠ABM=∠ACM=90°,AB=AC,AM=AM,
在Rt△ABM和Rt△ACM中,
$\left\{\begin{array}{l}{AM=AM}\\{AB=AC}\end{array}\right.$,
∴Rt△ABM≌Rt△ACM(HL),
∴∠BAM=∠CAM,
∴AM⊥BC,
在Rt△ABE和Rt△ACD中,
$\left\{\begin{array}{l}{AE=AD}\\{AB=AC}\end{array}\right.$,
∴Rt△ABE≌Rt△ACD(HL),
∴∠BAE=∠CAD,
∴∠EAM=∠DAM,
∴AM⊥ED,
∴BC∥DE.

点评 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、平行线的判定、菱形的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=ax2+bx+c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6,则梯形的两腰长分别为2、2$\sqrt{2}$,该抛物线解析式为y=$-\frac{1}{4}{x}^{2}+\frac{1}{2}x+6$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB=AC,AD=AE,∠DAB=∠EAC,DE=CB.
(1)求证:四边形DEBC是矩形.
(2)若△ABC是等边三角形,BC=4,EB=2,求AD2的值.
(3)某班的清洁区形如五边形ADCBE,值日生李拼、张博两人必须在规定时间内打扫完毕,若李拼单独完成需12分钟,张博单独完成需15分钟.张博打扫6分钟后,李拼加入一起打扫,两人恰好在规定时间内完成,求规定时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知二次函数y=ax2-4x+c的图象经过点A(-1,0)和点D(5,0).
(1)求该二次函数的解析式;
(2)直接写出该抛物线的对称轴及顶点C的坐标;
(3)抛物线上是否存在点P使得△ADP的面积等于15?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,点E是正方形ABCD内一点,点E到点A,B和D的距离分别为1,2$\sqrt{2}$,$\sqrt{10}$.将△ADE绕点A旋转至△ABG,连结ABG,连结AE,并延长AE与BC相交于点F,连接GF,则线段GF长为$\frac{\sqrt{178}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知在矩形ABCD中,BC=2CD=2a,点E在边CD上,在矩形ABCD的左侧作矩形ECGF,使CG=2GF=2b,连接BD,CF,连结AF交BD于点H.

(1)求证:BD∥CF;
(2)求证:H是AF的中点;
(3)连结CH,若HC⊥BD,求a:b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.用科学计算器比较大小:4sin44°<$\sqrt{17}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在如图所示的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(即三角形的顶点都在格点是),请在图中作出△ABC饶点B顺时针方向旋转90°后得到的△A1BC1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看到的情形如图所示,则字母C的对面是(  )
A.字母AB.字母BC.字母DD.字母F

查看答案和解析>>

同步练习册答案