【题目】在平面直角坐标系中,为坐标原点,直线交二次函数的图像于点,,点在该二次函数的图像上,设过点(其中)且平行于轴的直线交直线于点,交直线于点,以线段、为邻边作矩形.
(1)若点的横坐标为8.
①用含的代数式表示的坐标;
②点能否落在该二次函数的图像上?若能,求出的值;若不能,请说明理由;
(2)当时,若点恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线的函数表达式.
【答案】(1)①;②能,;(2)或.
【解析】
(1)①求出点的坐标,直线直线的解析式即可解决问题.
②求出直线的解析式,求出点的坐标,利用矩形的性质求出点的坐标,再利用待定系数法求出的值即可.
(2)分两种情形:①当点在轴的右侧时,设,求出点的坐标利用待定系数法构建方程求出即可.②当点在轴的左侧时,即为①中点的位置,利用①中结论即可解决问题.
解:(1)①点在的图象上,横坐标为8,
,
直线的解析式为,
点的纵坐标为,
,;
②假设能在抛物线上,
,
直线的解析式为,
点在直线上,纵坐标为,
,
的中点的坐标为,,
,,把点坐标代入抛物线的解析式得到.
(2)①当点在轴右侧时,设,所以直线解析式为,
∴,
,
直线的解析式为,可得,,
,,代入抛物线的解析式得到,,
解得,
直线的解析式为.
②当点在轴左侧时,即为①中点位置,
∴直线的解析式为;
综上所述,直线的解析式为或.
科目:初中数学 来源: 题型:
【题目】河南省开封市铁塔始建于公元1049年(北宋皇祐元年),是国家重点保护文物之一,在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一个台阶的底部A处测得塔顶P的仰角为45°,走到台阶顶部B处,又测得塔顶P的仰角为38.7°,已知台阶的总高度BC为3米,总长度AC为10米,试求铁塔的高度.(结果精确到1米,参考数据:sin38.7°≈0.63,cos38.7°≈0.78,tan38.7°≈0.80)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连接AE,交CD于点F.
(1)若⊙O的半径为8,求CD的长;
(2)若PF=13,求PE的长;
(3)在(2)的条件下,sinA=,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
(1)本次比赛参赛选手共有________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为________;
(2)补全图2频数直方图;
(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;
(4)成绩前四名是2名男生和2名女生,若他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.
(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是________;
(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.
(1)求证:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2021年起,江苏省高考采用“”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.
(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;
(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 直线与轴交于点,与双曲线 在第三象限交于两点,且 ;下列等边三角形,,,……的边,,,……在轴上,顶点……在该双曲线第一象限的分支上,则= ____,前25个等边三角形的周长之和为 _______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点.垂直于轴的直线与抛物线交于点,,与直线交于点,若,记,则的取值范围为( )
A.5<s<6B.6<s<7C.7<s<8D.8<s<9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com