精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,P是对角线BD上的一点,过点CCQ∥DB,且CQ=DP,连接AP、BQ、PQ.

(1)求证:△APD≌△BQC;

(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.

【答案】证明见解析

【解析】

(1)根据正方形的性质和全等三角形的判定证明即可;

(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;

(1)证明:四边形ABCD是平行四边形,

∴AD=BC,AD∥BC,

∴∠ADB=∠DBC,

∵CQ∥DB,

∴∠BCQ=∠DBC,

∵DP=CQ,

∴△ADP≌△BCQ.

(2)证明:∵CQ∥DB,且CQ=DP,

四边形CQPD是平行四边形,

∴CD=PQ,CD∥PQ,

四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

∴AB=PQ,AB∥PQ,

四边形ABQP是平行四边形,

∵△ADP≌△BCQ,

∴∠APD=∠BQC,

∵∠∠APD+∠APB=180°,

∴∠ABP=∠APB,

∴AB=AP,

四边形ABQP是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从甲、乙两名同学中选拔一人参加中华好诗词大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出=83分,=82分,绘制成如下尚不完整的统计图表.

甲、乙两人模拟成绩统计表

甲成绩/

79

86

82

a

83

乙成绩/

88

79

90

81

72

根据以上信息,回答下列问题:

(1)a=   

(2)请完成图中表示甲成绩变化情况的折线.

(3)经计算S2=6,S2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.

(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个自然数的立方,可以分裂成若干个连续奇数的和。例如:分别可以按如图所示的方式分裂2个、3个和4个连续奇数的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此规律来进行分裂,则分裂出的奇数中,最大的奇数是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点Bx轴上,AC=BC,过点BBDx轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当CMN是直角三角形时,求点M的坐标;

(3)试求出AM+AN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B=C=DEF,点DEF分别在ABAC上,且BD=CE.求证:DE=EF

证明:(请将下面的证明过程补充完整)

∵∠B+BDE+BED=180°______

DEF+FEC+BED=180°______

B=DEF(已知)

∴∠BDE=FEC______

BDECEF

B=C(已知)

BD=CE______

BDE=FEC______

∴△BDE≌△CEF______)(用字母表示)

DE=EF______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBC,AFCD,垂足分别为E,F,且BE=DF.

(1)求证:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+4图象交直线OA于点A(1,2),交y轴于点B,点C为坐标平面内一点.

(1)k;

(2)若以OABC为顶点的四边形为菱形,则C点坐标为

(3)在直线AB上找点D,使OAD的面积与((2)中菱形面积相等,则D点坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.20195月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解1060岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:

组别

年龄段

频数(人数)

1

5

2

3

35

4

20

5

15

1)请直接写出      ,第3组人数在扇形统计图中所对应的圆心角是   度.

2)请补全上面的频数分布直方图;

3)假设该市现有1060岁的市民300万人,问4050岁年龄段的关注本次大会的人数约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点Dy轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.

(1)当点P经过点C时,求直线DP的函数解析式;

(2)①求△OPD的面积S关于t的函数解析式;

②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.

(3)P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案